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3) The Campus Facility is located more than a quarter mile from the Medical 
School. Although this distance may sound small, it is a physical obstacle which 
does present potential interaction problems, despite the terminal service available; 

4) Current disk rates and the ORVYL file system will make disk storage more 
expensivo for medical users that the current ACME rates. See the subsequent 
section on Cost Considerations; 

5) A large facility serving several thousand users may have less flexibility 
in terms of changing its systems than a smaller facility serving approximately 
300 user projects; 

6) ACM? users would have to translate their programs to the form of 
interactive I'],/1 mounted on the Campus Facility. Hopefully the conversion cost 
can be m.iriimized with translation aids prepared by the facility. 

Comments on Cost Comparisons between Campus and ACME Services: 

Cost comparisons have been difficult to draw between Campus and ACME Facili- 
ties due to the disparate nature of the facilities and the accounting algorithms. 
Three of the FORTRAN programs used in the ORVYL capacity study were translated 
into PL/ACME. The three were of different types: A matrix multiplier which is 
heavily compute-bound, a file writing program, and a psuedo parser which is pri- 
marily a string manipulator with a great deal of 2741 output. Considering only 
the charges for CPU time and terminal access time under both systems, the compute- 
bound job would cost 42ql less on Campus Facility than on ACME assuming that ACME 
is used during hours of heavy activity. The other two programs (which were heavi- 
ly clepenrlent on output speeds) provided roughly equal costs at Campus and ACME. 
These cost statements assume that ACME is charged at 2-l/24 per pageminute plus 
.$i.'i"j per terminal hour on the old 8 microsecond bulk core. The Campus rates 
w('rr the ::t:rnli:lrd $10 pr'r CPU minute on ORVYL, plus $3.50 per terminal hour. 
Ont> fnc-tor which is difficult to evalu:\te is the extent to which the CPU plus 
tc>-r-m i.n:t L :ic'oc:::: at Campus. rc.flcctz the total cost of the *job. Averaging all 
ll::('r c~ll:rryr‘:: f'r)r fY::c;tl yc-:~r lV(l :k khc CarnTu:: F:lcility, a total. of 68$ wa:: de- 
T'i vcb11 Tr0l11 Clll Il:::~f~y~ :rnll tt??Tlini11 :tf:cv::::. 'ribi:: rn('an:: th:lt, another $I,$ of th, in- 
~'Olll(' w:1:: ~I(\r*-ivcarI fYan di;:l< :;torafl;c, printing, card punching, card reading, off'- 
I inr plott;i.ng, and use of the WYLWR text editg?r. The point is that 32s of the 
in(:orrle comes from sources other than those used in the above comparison. 

At ACME the charges to users other than pageminutes and terminal access 
cover disk storage and terminal rental service. ACME's terminal rental service 
includes an add-on to ccver general services to the community whereas the Cam- 
pus Facility terminal rental rate covers only costs. The rate is $135 per month 
plus $4 to $13 for teiephone lines on the Campus Facility versus $225 per month 
on ACME for a private 2741 terminal. The disk storage rate at ACME is 14 per 
track per day versus Campus Facility rate recently announced of 24 per track per 
day. Since ACME has moved to a faster bulk core, it can now provide more comput- 
ing per dollar than the old 2 l/2+ per pageminute rate permitted; the effect of 
the new core will vary by types of use. 
70" 

Cycle intensive users will use 50"' to 
of the pageminute usage encountered with the slower bulk core. Data input 

via terminal:: and program development will require about the same number of 
p:lr;ctninutc:: on the new core. 
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The cost comparisons are difficult to make. It is clear that compute-bound 
jobs can be executed more efficiently on the Campus Facility than on the ACME 
configuration. I/O bound jobs tend to run at roughly comparable costs on each 
facility. On the basis of these findings, it appears that short term economics 
should not be the basis for any decision with respect to merger or lack of merger. 

Dist: Staff/All 
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Introduction: 

A set of pro,n;ramS were collected for the purpose of measuring .the effect 
on the ACME system of substituting AMPT1:X 2.5 microsecond core for IBM's 
8 microsecond Large Capacity Storage. 

Fssentially, these programs were selected to answer three questions: 

1. Whether the AMPEX core boxes do indeed have a 3.5 microsecond 
cycle time. 

'2 I. The performance improvement on a hopefully representative set of 
PL/AC!MF programs. 

3. Whether the core substitution would have any effect on the 
ion rate between the 1800 and the 360. maximum possible transmiss 

WCTR-1 
R[=gina Frey 

November 29, lq71 

("onlpa~~ative Core Timiy,s: 

At1 0:: batch program was written in assembler language which measured the 
t.rue cycle times of t;le IBM 2050 'fast' core, the IBM 2361 LCS, and the 

,/ AMPi',X COYC boxes. 'The time required in each cage to perform a series of 
fixeti and floating point operations was measured. 

The results are given in Table 1. The program contains four loops. The 
first measures true cycle time; the last three time loops containing 
fixed poirit arithmetic, short floating point arithmetic, and long floating 
point arithmetic instructions. 

That each core box performed according to specification was proved in the 
first operation. The operation consisted of little more than ten million 
STore instructions. Each ST requires 2 core cycles for completion. Thus 
if the core cycle is 2 PS, then each ST will require 4 ps, ten million of 
them req]Jire 4 x10 x106 p.s or &O seconds. 
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point 
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Table 1. Core Timing Results (Seconds) 
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IBM IBM AMPEX 2050 
2050 AMPEX 

-(Fast Core) 
2361 2361 AMPEX 

(Bulk Core) (Bulk Core) 0 (F) 

40.29 50.46 161.65 31 80 

111.10 121.ll 220.17 55 91 

118.14 128.15 214.36 60 92 

287.16 302.19 440.25 69 95 

Notes on Table 1: 

1. The AMPEX times are 

2. All figures include 
fetch/conversion of 

the averages of two runs. 

overhead time for instruction loop control and 
the interval timer. 

3. Time intervals were calculated to the nearest one-hundredth of a second. 
The TIME SVC was used to obtain the contents of the hardware timer. 

4. The operations performed in each loop were: 

a> Fixed point store: 10 x lG* ST instructions. 

b) Fixed point arithmetic: 2 x lo6 sequences of L, M, A, S, D. 

c) Short floating arithmetic: 2 x 10" sequences of LE, ME, AE, SE, DE. 

d) Long floating arithmetic: 2 x lo6 sequences of LD, MD, AD, SD, DD. 

5. No index register was used in any of the instructions. 
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:;cvcrl Pi,/ACbiI; pro;;rams were run with the .iBI? ::$l core <and the AMPF:)! 
c:oru. All of ihese programs were written by the ACME staff. 

XL1 y'U.IlS were executed in single user mode. 
11/l+ and 11/U, was used. 

Module TEN& written on 
i'he differences between the two versions of the 

module do not affect the results. 

The program attributes are given below; the timing results are in Table 2. 
'The performance improvement was calculated as the difference between 
IBM time 

CM1 

lispi.est 

l'l,A I'i,I - 

I'T,OT 1 

randi'ilc 

and AMPEX time over the original IBM time. 

Attributes 

PDP-II assembler . No t,erminal output. Moderate disk file 
T/O. Hrtavy string operations. 

Matrix mllltiplier. No I/O operations, no strings. Totally 
compute-bound. 

Disk file read and write sequential operations. 'Cime was 
measured for reading and writing 100 records of one block 
each. 'i'he loop was repeated 10 times each run. 1.ittl.e 
computation. IJo terminal output. 

LISP test program. Light file and terminal activity. The 
program did not complete due to an error in the LISP garbage 
collector. Time was measured by eyeballing the machine room 
Cl.OCk. 

'i'V p1.r)IA.i ~i:r prcbiram. No file or !,errflinaIL activit,y. 1,i phi, 
mathematical c,alculations. Heavily dependent upon the speed 
of the display, 

Random disk file operations. Light computations; no termi-nal 
output. The program consists of three sequences: Write 
direct of 20 records with randomly assigned keys, each record 
1200 words long; Read sequentially each of the randordy 
written records; Read randomly the "0 records 5 times for a 
total of 100 reads. 



Core 

\ 

Perform 

Program \ 

CONVERSE 

IBM 
2361 AMPEX 

5.7 min. 3.2 min. 

CM1 6.1 min. 2.5 min. 

lisptest 4.75 min. 3.0 min. 

PLA PLl - 

PLOT1 

23.8 min. 17.4 min. 

4.9 min. 4.0 min. 

iotime: 
100 reads 
100 writes 

13.2 set 9.5 set 28.0 
19.8 set 14.4 set 27.3 

randfile: 
20 write direc 
20 read seq. 

100 read direct 

23.0 set 15.8 set 31.3 
71.7 set 34.2 set 52.3 
49.1 set 29.1 set 40.7 

032) 

Table 2. PL/ACME Program Timing Results 
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Performance 
Improvement('%) 

Average 36.5 

46.9 

59.0 

36.8 

24.8 

18.1 
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The rattler unexpected gains in the execution speeds of 'iotime' and 
' rant1 f i 1-e' require discussion. While they were included primarily for 
determining a base against which to measure the impending AMPEX disk 
drives, the results of this test provide some interesting information 
regardin{: the nature of the ACME file system. 

Unfortunately, ’ iotime’ was executed only once with the IBM core, so while 
the times listed are the averages for 1000 operations (100 read/writes 
repeated 10 times), they may not in fact represent true average results. 
This statement is based on two facts: The times for the 10 repetitions 
did not vary greatly, but the differences between the AMPEX runs were 
considerable. 

’ iol;ime’ was executed )C times with the AMPEX core. The time req-uired 
for 100 reads varied from 7.2 seconds to 14.7 seconds. For 100 writes, 
tile variance was from 13 seconds to 17.4 seconds. 

‘I’hcsc broach range:; are due to the variability of the required disk head 
seek time (from near zero to a maximum of 130 milliseconds.) 

Because of the ascendingly ordered nature of the ACME Space List, the 
avera;:e seek time should not be 60 ms, but 25 ms (time to seek to next 
con-C i {:ilOUS cylinder). Total I/O time for an average read is 25 ms plus 
l'i.5 ms disk rotation time or 37.5 ms. For a write operation, an 
add~it,ional complete rotational period of 25 ms must be added for an 
avera::e time of 62.5 ms. 

Slibtracting these figures from the average times for a single read or 
write, we {:et these software overhead values: 

write 198 144 
- 6;:. 5 

1.35.5 ms 

'The values are somewhat inflated since the times required to update the 
index and to type the time on the terminal have not been subtracted. But 
clearly the unexpected savings while performing disk I/O have been 
explained, and equally clearly the file system software could be optimized. 

'randfile' was executed twice with the IBM core, four times with the AMPEX 
core. 411 comments on 'iotime' apply as well to 'randfile' except that 
the results of the individual runs were not as variable. 

'The phenomenal savings on the read sequential operation can be explained 
by the fact that the record keys were distributed randomly throughout the 
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file index and consequently a considerable amount of in-core index 
searching was necessary for finding the next sequential record. 

1800 Communications: 

Little improvement was expected in the 1800 communications transmission rate 
since the essential routines (EIGHTN$$$RWl8&$,YIELD) were already located 
in the 2.0 ps core. 

To test the hypothesis, one of Lee Hundley's 1800 test routines (READALOT) 
was executed before and after the core switch. The purpose of the tests 
was to establish the conditions under which data overruns (data arriving 
too soon for the 360 to process) would occur. 

READALOT accepts as parameters the number of 1800 input lines (N), the 
sample interval in milliseconds (TIME), and the number of 360 buffers 
assigned to each line (BUFS). Buffer size was fixed at the maximum 
permitted, 250 points. After experimentation, we decided to leave BUFS 
at its maximum value (20) and to vary only N and TIME. 

The following information was gathered from the IBM 2361 test: 

1. N=8 and TIME=1 (8000 points/set) will crash the 1800. 

2. N=7 and TIME=1 (7000 points/set) will cause data overruns. 

3. N=12 and TIME=2 (6000 points/set) will not cause data overruns. 

Running as a single user and performing no calculations on the collected 
data, the only significant overhead was the time required for YIELD to 
service the commutator (i.e., look for another user and ultimately 
return to the only active one). Therefore, to determine the approximate 
amount in excess of 6000 points/set at which overruns would occur, we 
inserted DELAY(O) statements in the program following each CALL READ 
(One DELAY(O) forces one yield to the commutator and wastes one time slice). 
With N=lZ and TIME=Z, two DELAY(O) statements resulted in overruns. 

The same program, executed in AMPEX core, gave these results: 

1. N=7 and TIME=1 (7000 points/set) will not result in overruns. 

2. N=7 and TIME=1 with two DELAY(O) statements will result in 
overruns. 

Thus the maximum possible data rate was increased by approximately 1000 
points per second or roughly 15%. 

The second experiment was concerned with the question of whether 
EIGHTN$$ could execute properly in 2.5 fls core. About six months ago, 
EIGHTN@ was moved from the 8 ps core to 2 ps core when it was discovered 
that the channel commands contained within EIGHTN@ could not be decoded 
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t'asl, enough and channel data chainin{: checks occurred. This condition 
prevni~.ecl nnly -If the buffer size was extremely small. 

A spcvial link edit ofk' TEN1 placed l~:l!;HTN$@ in 2.5 1~s core. Tests on 
illi:: module i:ave i,hese results: 

1. A buffer size of one no longer caused data chaining checks, but 
overrms consistently occurred, even at low data rates. At 
1000 points/set on the line, the 1800 will crash. 

.1 L. . A buffer size of two points or greater will execute properly. 

IIowever,it is not recommended that EIGHTNJd@ be moved out of our fast core. 
AMPEX performance at its best is still 80% of the maximum on a Model 50. 
Moving EIGHTN/i$! would decrease our maximum possible transmission rate 
(has not been tested). 

::ummary: 

It ha:-: been confirmed that the AMPEX core does run with a 2.5 microsecond 
yfclc time. Fixed point opcrationc execute 2 to 1 times faster; floating 
point operations roughly 1 l/2 times faster than in 8 microsecond core. 

Total time savings is heavily dependent upon the nature of a PL/ACME pro- 
gram. Terminal-bound or otherwise I/O dependent programs will see lit- 
tle increase in execution speed. Compute-bound programs may execute as 
much as 2 l/2 times faster. 

The time slice allocated to each executing program remains as before. 
Thus, terminal response time will in many cases be the same, but since 
111 or 6‘ -amputation is possible within each time slice, totpi execution time 
for 3 program will decrease. A s:mple of PL/ACME programs executes from 
li3 to 60d fa-ter /* .I . The average was jh.5$. 

Whi. I (' some improvement is realized for disk file operations, thv gain may 
bc unnoticed due to the yield to the commutator (other users) at the start 
of each I/O operation and the resultant wait by a user until his turn again 
arrives. 

The maximum 1800/360 transmission rate has increased by about 15%. A 
greater increase was not expected since the 360 communications program 
had already been located in 2 microsecond core. 

Dist: Prog/All/D. Phillips/C. Dickens 
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APPEEDIX C 

Results of Three Compaction Algorithms 

The test uas performed during a Pile System Analyzer run 
on all user data sets, February 28, 1972. 

CODIRGS USED BY EACB COBPEESSIOR ALGORITHR TO BUXLT BITSTRING* 

WORD IS ZERO 
WORD IS UYDBPIPED 
WORD HAS VALUE 
WORD IS REPEAT OF LAST HORD 

COWPACI COBPACZ COBPAC3 
00 00 
01 01 

1 10 0 
11 1 

TOTAL NON-RUXERIC WORDS = 16,532,183 

TOTAL EHPTX (zero) WORDS = 5,184,105 

The resultant savings frora the application of each algorithm 
is stated below. Percentage figures were coaputed as the total 
storage requirement after application of the algorithm over 
the cur rent storage requirement. TOTAL UORDS URElY LESS refers 
to the inclusion of a file only uhen its *compactwIg size is 
less than the original size. 

TOTAL WORDS IN ALL ACI5E HUHERIC DATA PILES 7.783.794 

TOTAL WORDS USING COBPACl ON ALL PILES 4,395,400 ( 56%) 
TOTAL WORDS USING CORPACI ONLY flEElO LESS 4,314,484 ( 55%) 

TOTAL WORDS USING COMPAC2 ON ALL PILBS 3,661,950 ( 47%) 
TOTAL WORDS USING COBPAC2 ORLY UHBR LESS 3,612,031 ( 46%) 

TOTAL WORDS USING CORPAC3 ON ALL PILES 3,818,520 ( 49X) 
TOTAL WORDS USING COHPAC3 ORLX UBBR LESS 3,783,314 ( 481) 

*The bitstring describes the characteristics of the values in a 
numric array. It is stored on disk along with sufficient data 
to reconstruct the array. Repeated, undefined, or zero data is 
omitted f ram storage. 
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Proposal for ,Sm,~ll Computer Service bv ACME 

PSCS-1 
Bob Stainton 

March 21, 19'12 

The rapid ciecline in the price of mini-computers has led to an incre:lse 
in the number of tl!esil computers installed at the Medical Center. This 
memo describes the services which could be provided to these computers 
by the ACME facility. 

The service is summarized as follows: 

1. Spooling service-- 
A. Accept data - 29 hours a day 
B. Send data (or processing modules) - 20 hours a day 

. On line service(while the user is actually logged on to ACME)-- 
A. Retrieve data from the spool 
R. Write data (or processing modules) to the spool for later 

use by the mini-computer 
C. Read and write directly to the mini-computer 

3. All services of an ACME typewriter terminal. 

4. High level language processors. 

,;pooling Service 

::pooling (Simultaneous Peripheral Operation) refers to a procedure which 
lla:: become popular with large-scale third generation computers. It is 
exemplified by :1 card reader whit:? is always ready to accept cards, even 
though these cards may not be processeG by a user program until sever:11 
hour:; have passeri. 

Our early t>xperience with -741 terminals has shown that their usefulness 
takc:‘s :j quantum <jump as soon as a computer system is installed which is 
continuou::ly av::ilable to "answer the telephone". 

Our proposal is to provic!e a computer s:ystem which is always (20 hours a 
d:ly) available to take r3:;ta from the user's mini-computer. Our defini- 
tion of mini-computer is any device which is able to conform to the re- 
cluirements of the communications protocol. The data will be hP1d on a 
special clisk system, and retrieved when the user "logs-on" to the ACME 
system and runs a program. In this way a research scientist may set up 
an experiment which may run for several hours during the night. The 
next morning he may "log-on" and run a program which processes the fiata 
generate<1 by that experiment. 

Another service of the spooling system is the ability to provide storage 
for "processing modules" which can be called by the mini-computer. The 
rel,ltionship bc,twe~n the mini-computer and the ACME system in this in- 
st:!nce can best be described by an analysis of the classic "pen tracking 
problem". 



(140) 
PSCS-1 
Page 2 

In order to draw a line by means of a "light pen", a tracking cross is 
displayed on the screen of a cathode ray tube at the location where the 
"pen" is pointing. As the "pen" moves, the cross is no longer in the 
center of vision of the pen, and a computer interrupt takes place. The 
computer now re-establishes the cross in a new location. 

To accomplish this smoothly requires a fast response and a large amount 
of data transfer, The response must be fast, or the cross will appear to 
drag as through a viscous fluid, The constant re-writing of the display 
requires the transfer of a large amount of data, 

The conventional solution to this problem would be to use a very high 
speed communications line between a large central processor and the re- 
mote screen. This would ask the communications line to do that which it 
is least able to do, namely, provide fast response with large volumes of 
data. 

A better solution is to employ a local mini-computer at the screen which 
produces the rapid response necessary to accomplish the "pen tracking". 
In this solution, a low speed communications line is used, and only the 
location of the tracking cross is sent to the large central computer. 
This information may be saved for later analysis or processed for a real 
time response. 

In the medical research environment, the local mini-computer would con- 
tain that part of the software necessary to provide immediate reaction to 
the stimulus of the experiment. This software is contained in a replace- 
able "processing module" which also directs the sending of partially 
processed data to the ACME system forstorage and statistical computation. 

The replaceable "processing module" may be changed for individual experi- 
ments, or a new module may be loaded dynamically as the life of an ex- 
periment progresses. 

These "processing modules" may be compiled in&e ACME system and saved on 
the spooling system for later call by the mini-computer. A list of ex- 
perimental parameters may also be stored on the spool and played back as 
data over an extended period of time. 

On Line Service 

The ACMEuser wouldbeable to access data which has been previously placed 
on the spool by using a special "OPEN FILE" statement. The data may then 
be accessed with "READ FILE" statements as a sequential data file. Simi- 
lar "WRITE FILE" statements may be used to write data (or processing mod- 
ules) to the spool system for later use by the mini-computer. 

An option would also be provided to bypass the spooling system and com- 
municate directly with a running ACME program, using the current directory 
mechanism. This allows the same realtime interactive service which has 
been available in the past. 
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A:: a (:onv~~ni~~ric~*, it i.:: rca!~izeil that, the "teletype" console of a mini- 
i~oi!~i~utcr :;houl~G b(> :tblc to act as if it were an ACME! tr>rminal, so that 
tllc u:cr neel! not use n separate "1741 terminal in order to use the ACMJS 
::y stem. The user would also be able to "log-on" and run programs auto- 
rriatic:!lly, untler control of a program in his mini-computer. 

High Level Language Processors 

We will attempt to provide a hardware-independent language for writing 
"processing modules". Translators for this language to produce object 
code for the most popular mini-computers would be produced. This would 
provide an ease of programming not found on stand-alone systems, as well 
as a medium for sharing programs among individual researchers. 

Im~~~emcntntion woulil require several loosely related projects: 

1. . 'nlc~ ;:pooling sy;;tem, housed in a separate mini-computer so that 
it can operate (luring maintenance hours for the large central 
computer. 

2. A switching system, for attaching a given user to an ACME port, 
a real time data port, or the spooling system. As a by-product, 
we hope to alloh) any mini-computer in the system to communicate 
with any other mini in the system. 

5. A communication system to transport the data and verify its 
correct receipt, with as little effort on the part of the mini- 
computer program as possible. We hope to provide a parallel, 
clemand-response interface to the mini-computer, which appears 
to its program as. n device similar to a tape drive. 

)I . IliglkLevel proce:::: or:; to provide an easy way of writing progrc-?;ns 
for the mini-computer. 

!!ist: Staff/All 


