In practice linkages are only made when the perceived need is deemed worth the effort. Without a central system the "potential" barrier to forming linkages can involve costly software and hardware interfaces. In a clinical research and teaching environment the number of possibly useful combinatorial linkages is large. If the "potential" barrier is great, innovation and experimentation is impeded. The forces in the system are then centrifugal instead of centripetal.

Since the management of the clinics and hospital also depends more and more on computer manipulation and extraction of data, the total systems behavior will have important economic as well as academic consequences.

The proposal for Computer Health Care Application Research gives an insight into the clinical and academic benefits of a shared common data base. This and several other grant proposals, involving interdepartmental collaboration have called for linking of data bases. The second section of the proposal addresses the important problem of the definition of the data base. The third portion, deals with file and retrieval systems for a clinical data base. This involves the potential utilization by twelve specific clinical activities of a shared data base. This grant, if implemented would spend approximately $86,000 per year in computer services. Some of these developments are currently underway on ACME.

In addition to the academic research needs of the clinical faculty, there are the requirements of the hospital for a shared data base. These are derived from managerial and economic imperatives as well as the hospital's educational and research goals.

There is no current completely acceptable solution that meets the requirements of a complete Hospital Information System (HIS). The search for this solution is a very important problem and one in which Stanford should be involved. It will affect many aspects of medical education and teaching as well as practice within a hospital environment. Within the next several years many elements of such systems will be successfully implemented and will be important parts of the operation of Stanford Hospital. The 370/158 has the capacity to allow Stanford to implement a hospital information system. The design of such a system and the timing and funding of its implementation are not part of this plan.

The Technicon HIS at El Camino provides insights into costs and CPU requirements of HIS. From the operation of the El Camino system since the first of this year, it now looks like they will in fact realize net savings of $85,000 per month, most of which will be realized by reductions in nursing staff personnel. El Camino is a hospital with 446 beds and 60 bassinettes. The Technicon Hospital Information System is designed around two 370/155's to support 2,000 beds at $6.00 per day. The CPU cost is about one-third the total cost. This is in addition to the cost of business operating systems. Roughly, this says that implementation of such a system at Stanford with 612 beds and 57 bassinettes would approximately double the dollars that would be available to be spent by the Hospital for central processing over our worst-case projections and a 50 per cent increase in our conservative projection in whatever year an HIS should be installed.
It will be economically important in the future to bring together dispersed elements of a patient information system into a coherent whole. It may be too difficult and expensive to do so, if dispersion has gone on too long. This is the difference between a stand-alone community hospital and a hospital-cum-medical school. The former can wait until it knows exactly what it wants to do. Stanford Medical School faculty and their research and teaching interests are in integral part of Stanford Hospital. They will and should carry out their academic functions in the best way available to them. Nothing can or should stop the dispersive process except the better alternative of a well-managed reliable central system that by its very nature makes collaboration easy.

ECL/mla

Attach.
To: Elliott Levinthal, Ph.D.

From: Stan Cohen, M. D.

Subject: Need for Common Computer Facility at the Medical Center

As we have discussed previously, there is an important need for a computer facility at the medical center to provide capability for faculty to share programs and data related to both clinical activities and research projects. At the present time, individual projects being carried out by various faculty members constitute component parts of what will probably eventually develop into a hospital information system capable of handling large amounts of patient-related data. Included among these components are the drug interaction warning system of the Division of Clinical Pharmacology, the Microbiology laboratory system developed on ACME by Dr. Merigan and his collaborators, the Clinical Chemistry and Hematology laboratory system developed by Dr. Sussman, the Medical Records system of Dr. Jim Fries, and the Cardiology data system of Dr. D. Harrison.

Patient care at this medical center requires that these separate data bases be available on a central computer system so that information accumulated by one project can be shared by others. For example, the identity of organisms cultured by the Clinical Microbiology laboratory and their resistance pattern should be accessible by the pharmacy system programs, so that a prescription that is inappropriate for a particular organism or drug resistance pattern can be detected at the time it is filled. Similarly, data being accumulated by the clinical chemistry laboratory indicating inadequate renal function should be available to the pharmacy system, so that alteration of dosage may be made for a drug eliminated from the body by excretion through the kidneys. Conversely, drugs that artifically influence the results of laboratory test findings by interference with spectrophotometric determinations and other test procedures, and this information should be available to the clinical laboratory. Cardiology data should be available for similar reasons, and since drug influence interpretation of cardiovascular tests, pharmacy data should be available through the cardiology system. All of the types of data indicated here, plus clinical findings related to the patient history and physical examination should be part of the time-oriented medical record system being developed by Dr. Fries.

Although this brief memo stresses the patient-care benefits that would derive from having a large medical center computer system available for sharing of data bases and programs, I also want to emphasize the importance of such a system to faculty research. Linkage of the clinical microbiology laboratory and pharmacy systems will enable epidemiological investigations of the effects of antibiotic use on resistance patterns of organisms isolated from patient populations. Similarly, research to detect new effects of drugs on clinical chemistry tests will also be feasible if the data bases can be shared. Although these are just a few examples, there are many other instances where sharing of data bases will enable important investigative questions to be asked and answered.

I hope that this brief memo provides the information you are seeking.
DATE: March 8, 1973

To: Elliott Leventhal

From: James F. Fries

Subject: Advantages of a variety of medical database operations sharing the same computing equipment.

Within the medical center and hospital there are a number of patient related computer databanks. Inevitably, the number and variety of clinical databank operations will increase over coming years. Material included in these databanks will be diverse yet similar. Thus, patient identifying information, financial and accounting information, clinical information required for insurance and third party carriers, historical and physical examination data elucidated by physicians, therapy prescribed and drugs dispensed, and the multiple forms of information emanating from various clinical laboratories, x-ray, cardiac catheterization and pathology departments will be accumulated in computer databanks. Over the long term, the facility with which information may be exchanged between these different operations will be of great importance. A research study may require stratification in terms of socio-economic data kept by the business office. The business office may require clinical information available in other databanks to process insurance forms. Billing may ultimately be related to the actual provision of the service at the physician level as documented in the chart and from laboratory information as it becomes available to the physician. Without provision for linkage and exchange of information the individual databank operations will require duplication of effort in data entry. Without capability of linking laboratory computer systems to clinical medical record databanks, laboratory data must be manually re-entered.

It can be stated fairly that medical computing has consisted in large part of duplication of effort both at Stanford and elsewhere. As the need for computer based clinical information systems grows there is the possibility of ever greater fragmentation and duplication of effort. The existence of a central computing facility for the medical center and hospital will allow planned growth, minimal redundancy, and exchange and pooling of clinical data. It will place the hospital and medical school in a strong position to meet increasing governmental requirements for "quality assurance" and medical audit.

JFF/hcp
March 8, 1973

Dr. Elliott Levinthal
Genetics Department

Dr. Donald C. Harrison
Cardiology Division

Advantages for a Hospital Computing System

Following our discussion yesterday, I have considered the advantages of a medical school computing system which would be a combination of hospital and medical school programs. The overall advantages are as follows:

A. Having a joint facility in the medical center would permit a common data base for all patients. This is essential for ongoing clinical research and for ease in efficiency of administrative operations. The case for this is as follows:

1. All patients under the care of Stanford faculty members in the Stanford University Hospital are either referred from the Stanford clinics prior to admission or are seen in follow-up in the clinics. Thus, it is essential that a data base include both aspects of the patient's record. This would encompass laboratory reports, x-ray studies, and ongoing follow-up data. These patients are frequently part of research protocols relating to the action of specific drugs, to the effects of surgical procedures, etc., and represent the basis for much of the clinical research being carried out by the clinical faculty.

2. A patient seen by one particular group in the hospital is frequently seen by others and data common to studies being carried out by several interrelated groups should be available to the various division and departments. This is particularly true in the case of Cardiology where patients are first seen by the medical cardiologist. Data are accumulated on the patients by the clinical laboratories, by the x-ray units, by the cardiologic units with special computer facilities such as the catheterization laboratory or the EKG laboratory, and then the patients undergo some surgical procedure in the Surgery Department. These patients are then followed up jointly by the various members of the Medicine, Surgery, and Radiology faculty. Consultants from Infectious Disease, from Immunology, and from other disciplines also frequently are asked to see these patients. To develop new concepts regarding the pathogenesis of disease, to test this in clinical populations, and to determine the effects of interventions upon these diseases, it is essential that these groups interrelate their data.
3. At the same time clinical data are being transmitted to patient's records, hospital charges can be assessed. Thus, for ease and efficiency of administrative detail, a cooperative computer facility is necessary.

B. With increased emphasis upon judging the quality of medical care and upon determining cost effectiveness of care, the integration of hospital activities and medical school activities becomes absolutely essential. Computer surveillance for drug interactions, for physician performance, and for developing new educational activities related to this aspect of medicine, necessitate a combined hospital medical school computer facility.

C. The accumulation of a critical mass of individuals working in hospital information systems for Stanford Medical School seems essential. The interrelationships of data from small computer systems in the various divisions and departments and support for these interfaces would be provided by a combined computer facility.

For the reasons of improving the delivery of health care, for enhancing clinical research, and for improving integrated teaching programs I would strongly support the development of a hospital medical school computer facility.
This memo is in response to your questions in regard to my thoughts concerning the ACNE system and its present and future contributions to clinical investigation. The availability of equipment and the ease of the language of ACNE has personally benefited me enormously during the past 5 years while we have been working with patient oriented systems for our Diagnostic Microbiology and hospital epidemiology functions. As you know, all of our antimicrobial identification and antibiotic sensitivity data goes into ACNE on an on-line basis from our hospital service laboratory. This involves only a minimal amount of time for our secretaries and technicians and produces a useful return from two standpoints: the antimicrobial sensitivity data is quality controlled prior to its issuance to physicians and all of our previous experience is immediately accessible for our clinical consultants as well as the Diagnostic Microbiology Laboratory personnel.

In regard to hospital epidemiology, the filed information is automatically put together on a monthly and semi-annual basis for reporting to the Infection Control Board members and the state and county authorities. The infection control nurses use this information in deciding whether there is any increased incidence of nosocomial infection at Stanford University Hospital, and now records dating back two years are available in that area whereas the antibiotic sensitivity and isolation information goes back some four years allowing many types of comparisons which wouldn't be possible without this regular recording of data.

I think the point you are particularly interested in, however, is how a commonly shared system among various clinical users which is tied in with the hospital system might be particularly advantageous. We find that as the ACNE system was used for development and now the maintenance of our infection control and diagnostic microbiology systems, these two systems can be linked up quite easily and personnel who operate one can also utilize the other. However, a very exciting proposition has come up in that our systems are being linked to Dr. Stanley Cohen's pharmacy based system on drug interaction because our languages are compatible. His system was also initially developed on ACNE equipment. Of course, he uses the hospital Business Office information in his pharmacy based system. We would use a shared data base with him as well as provide on-line quality control for the use of antibiotics. Hence, when drugs are ordered from the pharmacy prior to their issuance to the wards, the reports currently coming out of our Diagnostic Microbiology Laboratory would be used together with appropriate rules to advise all concerned as to their suitability.

It is quite likely that Dr. Howard Sussman's clinical chemistry information system will also be linked in the future to these systems to provide data on
potential limitations to use of antimicrobials which are an important part of the quality control of physician decision making. As you can see, having all three of these systems linked up to a common hospital base facility obviously allows interactive programs and shared data bases which would not be possible without much interfacing difficulties. Therefore, I believe a common hospital system will promote similar collaboration for others in the future.

Can you send me a copy of the application on Computer Health Care Applications Research for my files? Thank you.
TO: Peter F. Carpenter, Assistant Vice President of Medical Affairs
FROM: V. H. Barber, Assistant Controller for EDP
SUBJECT: Medical Center Computer Planning Chronology

Presented below is a chronology of events related to computer planning from late 1970 to date.

Late 1970 - Early 1971

Medical Center Sub-Committee for Computing accomplished very little except for a survey of computer and data processing needs at the Stanford University Medical Center.

October 1971

President's Computer Science Advisory Committee annual visit results in general observation that computer planning has deteriorated.

December 8, 1971

Medical Center computer briefing to Dean Clayton Rich. Presentations by:

V. Barber
C. Dickens
G. Franklin
R. Jamtgaard
T. Phillips
M. Roberts

December 28, 1971

Medical Center Computer Planning Committee created.

Chairman: E. Levinthal
Members: S. Cohen, M.D.
J. DeGrazia, M.D.
F. Dong, M.D.
S. Kalman, M.D.
R. Jamtgaard
T. Rindfleisch
J. Stead
J. Williams
V. Barber
Medical Center Computer Planning Committee meetings were held on:

1/24/72 Various configurations of computers, utilization of HDP and ACME loads were monitored. Organizational structures were studied;
1/31/72 long- and short-term plans were considered. Needs of research groups were put forth. First major report of hardware alternatives was presented March 20, 1972.
2/15/72
3/6/72
3/20/72
4/10/72
4/24/72
5/3/72
5/19/72
5/31/72
Various meetings in June

July 18 - August 3, 1972

Presentations of the various alternatives to computing in the Medical Center were made to the Computer Planning Committee.

July 26 Stanford University Medical Center Proposed Service Facility position paper - V. Barber.

August 3 Position paper advocating that computing service for the Stanford University Medical Center be supplied by a University computing facility - G. Franklin, T. Phillips, M. Roberts.

August 11, 12, 1972

Recap of Committee activity and alternatives for computing to Dean Rich. Made recommendation to him for computing. The conclusions of the Committee are attached in letters from E. Levinthal dated August 17 and August 18, 1972.

August 22, 1972

Medical School Executive Committee meeting. Clayton Rich, M.D., updated Executive Committee on computing alternatives (see attached letter of August 22, 1972).

August 21-23, 1972

Clayton Rich dismissed original committee (see 12/28/71) and created an interim committee:

Chairman: J. Stead
Members: V. Barber
R. Jamtgaard
E. Levinthal
Purpose: Summarize the financial and technical findings of the Medical Center Computer Planning Committee.

August 30, 1972

September, 1972

Gene Franklin made recommendation to Vice Presidential Group regarding University-wide solution to computing. He was directed to draft a policy statement and a plan.

November 8, 1972

An Advisory Group on Computing Merger was established consisting of:

Chairman: G. Franklin
Members: K. Creighton
 C. Dickens
 T. Gonda, M.D.
 E. Levinthal

This group appointed a Planning Task Force made up of:

Chairman: C. Dickens
Members: V. Barber
 R. Jamtgaard
 M. Ray
 F. Riddle

November - December 1972

Task Force has several sub-committees. Various meetings were held during this period of time.

December 29, 1972

Task Force submitted its report and recommendation to the Advisory Group. Recommendations are attached.

January 1973

Dean Clayton Rich asked if the original SUH Data Processing proposal (see July 26, 1972) could offer a possible solution to Medical Center computing.
January - February 1973

Numerous meetings and analyses were conducted in this period. Results were a 360/65 or 370/158 if properly organized and planned could solve Medical Center computing needs.

February 23, 1973

Recommendation to Vice Presidential Group for purchase of a 370/158.

March 1973

Medical Center computing solution still under study.
APPENDIX C

(Excerpt from ACM Note HAD)

IBM 2701/SATELLITE COMPUTER MULTIPLEXOR DESIGN AND OPERATION

I. INTRODUCTION

This paper is intended to describe the design criteria, specifications and feature, theory of operation, and operational procedures for the IBM 2701/SATELLITE COMPUTER MULTIPLEXOR. The design criteria section explains some design philosophies and some desirable features that such a system should have. Features section gives a list of specifications and features. Theory of operation explains in detail how this system works. And finally operational procedures section gives detailed trouble shooting procedures for problem isolation and procedures to bring on a new user.

II. DESIGN CRITERIA

The purpose of a HOST/SATELLITE COMPUTER MULTIPLEXOR is to allow several remote satellite computers to communicate directly to a host computer and vice versa. The main function of the satellite computer multiplexor is to allow only one satellite computer to communicate to/from the host computer at a time. The satellite computer multiplexor should be capable of handling up to sixteen remote satellite computers. The satellite computer multiplexor should be designed such that it will be independent of the host computers' and satellite computer's designs and/or operational characteristics. All remote satellite computers, 100 feet away from the host computer, must transmit data serially to/from the host computer via the satellite computer multiplexor. The satellite computer multiplexor must be capable of timing out in the event of any malfunction or due to one particular satellite computer which has used up its allotted time in transmitting data to/from the host computer. And lastly, the host computer must be capable of interrupting any of the satellite computers via the satellite computer multiplexor.

In order to meet the above criteria, the satellite computer multiplexor can be thought of as made up of three basic sections: host computer interface, multiplexor control, and satellite computer I/O control, as shown in Figure 1.

The function performed by the host computer interface is handling all I/O signals to/from the host computer.

The functions performed by the multiplexor control are queueing satellite computer interrupt requests, establishing communication with the host computer, making sure that proper identification from the satellite computer is passed to the host computer, passing status to the host and to the satellite computer at all phases of the data transfer, detecting time-out conditions, monitoring and flagging any malfunction for trouble-shooting purposes, and allowing the host computer to interrupt any satellite computer.
FIGURE 1 SATELLITE COMPUTER MULTIPLEXOR
The functions performed by the satellite computer I/O control are serializing and deserializing data to/from remote satellite computers and allowing parallel data transfer if satellite computers are within 100 feet of the host computer. Serial data are to be transmitted bit asynchronous and an optional choice between word or character synchronous or synchronous.

In order to maintain complete flexibility at the satellite computer end because of different computers, the interface between the satellite computer multiplexor and the satellite computer is to be divided into general and special interfaces. The general interface is to handle all I/O signals to/from the satellite computer multiplexor and the special interface is to handle all I/O signals to/from a particular satellite computer.

For implementation, the host computer is an IBM 360/50 and the satellite computer multiplexor is interfaced to one of the ports of an IBM 2701 Parallel Data Adapter (PDA). This means that the satellite computer multiplexor will work with any IBM 360/370 host computer as long as it is interfaced through an IBM 2701 PDA port. Remote satellite computers, on the other hand, can be DEC PDP-8, 9, 10, 11, 12, 15 or XDS Sigma 3, 5, 7, or Hewlett-Packard HP-2411, 2115, 2116, or Varian 620i, 620f, or etc.

III. SPECIFICATIONS AND FEATURES

1. Handle up to 16 simultaneous satellite computers.

2. The satellite computer multiplexor is interrupt driven. It operates strictly on demand/response basis.

3. Each satellite computer talks to the IBM 360 on a first come, first served basis.

4. Each satellite computer can be assigned to any one of the 16 multiplexor channels.

5. Each satellite computer has a hardware key address at the satellite computer multiplexor end for ID purposes.

6. Transmission mode is by serial asynchronous half duplex for remote and/or parallel asynchronous for local operation.

7. Transmission speed is hardwired and the available speeds are: 250K*, 100K*, 50K, 10K, 5K baud per second.

8. Word transmission rate for maximum word length (20 bits) is: 12.5K, 5K, 2.5K, 500, 250 words per second.

*Recommended for twisted pair less than 1000 feet or coaxial cable for longer distances
9. Maximum serial bit transmission between satellite computer multiplexor and satellite computer is 20 bits; that is 1 start bit, 2 control bits, 16 data bits, and 1 stop bit.

10. Maximum word length from satellite computer is 16 bits.

11. Data path between IBM 2701 and satellite computer multiplexor is 16 bits wide.

12. The satellite computer has the option to run in complete demand/response (synchronous by character) or semi-complete demand/response (asynchronous by character) modes. Note this is not a programmable function.

13. The satellite computer running under complete demand/response mode requires four twisted pairs and operates at lower data rate.

14. The satellite computer running under semi-complete demand/response mode requires only two twisted pairs and operates at higher data rate.

15. The IBM 360 asynchronously can interrupt any satellite computer via the multiplexor.

16. The IBM 360 can pass status to a satellite during the normal transmission cycle.

17. The satellite computer will receive all error and termination conditions through coded messages from the multiplexor so that it can act accordingly.

18. Detailed handshaking procedures between the satellite computer and the host computer are described in the section "Asynchronous/Synchronous Data Transfer between Satellite and Host Computers".
ACME Notes, written by all members of the ACME staff, are informal working papers. They are divided below into four main categories: General Information, Administration and Utilization, System Information, and User Information. Subcategories under System Information and User Information parallel each other. Programs on ACME's PUBLIC file and the ACME Statistical Library are listed at the end of the Index.

The letters in the ACME Note codes are for filing and reference purposes only; the numbers in the codes—except for part of the J series—indicate reissues. All but historians can dispose of superseded issues. The J series and parts of other ACME Notes are incorporated into the PL/ACME Manual (AM) revisions.

If you wish to have a copy of an ACME Note, it is available at the ACME office. Those notes preceded by an asterisk (*) are new or have been changed in some way since the last ACME Notes Index was issued.

ACME Notes which have become OBSOLETE with this issue of AA are listed separately in the last section to this index.

GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-40</td>
<td>ACME Notes Index (Baxter)</td>
<td>MAY 11, 1973</td>
</tr>
<tr>
<td>AAOBS-8</td>
<td>Obsolete ACME Notes (Baxter)</td>
<td>OCT 10, 1972</td>
</tr>
<tr>
<td>ACONT-1</td>
<td>The Need and A Method to Obliterate Control Languages (Wiederhold) Submitted to ACM SIGPLAN/SIGOPS Workshop, Savannah, Georgia, April 9-12, 1973</td>
<td>NOV 22, 1972</td>
</tr>
<tr>
<td>AD-1</td>
<td>An Advanced Computer System for Medical Research (History, Goals, etc.) (Staff)</td>
<td>MAR 1967</td>
</tr>
<tr>
<td>ADJ-1</td>
<td>An Advanced Computer System for Medical Research (Wiederhold)</td>
<td>DEC 8, 1969</td>
</tr>
<tr>
<td>ADJ-1</td>
<td>An Advanced Computer System for Medical Research (in Japanese) (Wiederhold)</td>
<td>DEC 8, 1969</td>
</tr>
<tr>
<td>AE-3</td>
<td>A Timeshared Data-Acquisition System (Wiederhold/Hundley)</td>
<td>MAR 26, 1970</td>
</tr>
<tr>
<td>AF-1</td>
<td>A Filing System for Medical Research (Frey/Civardi/Wiederhold)</td>
<td>MAR 24, 1970</td>
</tr>
<tr>
<td>APORT-1</td>
<td>Implementing a Time-Shared/Realtime System in FORTRAN (Frey)</td>
<td>APR 21, 1971</td>
</tr>
<tr>
<td>AG-1</td>
<td>Usage of the ACME System (Wiederhold)</td>
<td>NOV 15, 1971</td>
</tr>
<tr>
<td>AHCALL-1</td>
<td>Communication Hardware for Simplified Protocol (Stainton)</td>
<td>FEB 14, 1973</td>
</tr>
<tr>
<td>AI-1</td>
<td>The ACME Compiler (Breitbard/Wiederhold)</td>
<td>MAY 8, 1968</td>
</tr>
<tr>
<td>AIM-1</td>
<td>A Method for Increasing the Modularity of Large Systems (Wiederhold/Breitbard)</td>
<td>DEC 31, 1968</td>
</tr>
<tr>
<td>AINST-1</td>
<td>Instant 360—Chart (Wiederhold)</td>
<td>JAN 1, 1969</td>
</tr>
<tr>
<td>AL-1</td>
<td>An Advanced Computer System for Real-Time Medical Applications (Wiederhold/Crouse)</td>
<td>DEC 4, 1968</td>
</tr>
<tr>
<td>ANS-1</td>
<td>Mass Spectrometers in a Time-Shared Environment (Reynolds/Sucker/Stillman/Bridges)</td>
<td>OCT 10, 1969</td>
</tr>
<tr>
<td>AW-2</td>
<td>Setting Up a General-Purpose Data-Acquisition System (Wiederhold)</td>
<td>DEC 5, 1969</td>
</tr>
<tr>
<td>AND-5</td>
<td>Information for New ACME Users (Baxter)</td>
<td>MAY 1, 1972</td>
</tr>
<tr>
<td>AO-3</td>
<td>Computers in the Medical Center (Staff)</td>
<td>SEP 13, 1972</td>
</tr>
<tr>
<td>APCALL-1</td>
<td>A Conventional Protocol for Synchronous Data Communications (Stainton)</td>
<td>FEB 14, 1973</td>
</tr>
<tr>
<td>Document Title</td>
<td>Author(s)</td>
<td>Date</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Preliminary Planning Outline for a 370/158 Facility (Jamtgaard)</td>
<td></td>
<td>NOV 6, 1972</td>
</tr>
<tr>
<td>Papers Written by ACM Users (Baxter)</td>
<td></td>
<td>JAN 10, 1973</td>
</tr>
<tr>
<td>A Summary of the ACME System (Wiederhold)</td>
<td></td>
<td>OCT 31, 1966</td>
</tr>
<tr>
<td>A Summary of the ACME System (Wiederhold)</td>
<td></td>
<td>NOV 11, 1966</td>
</tr>
<tr>
<td>New Environments for Statistics (Wiederhold)</td>
<td></td>
<td>JUL 24, 1970</td>
</tr>
<tr>
<td>Square Computers in Round Sieves – An Approach to Determining the Suitability of Computing Alternatives – Minis, Maxis, Shared – For Various Problems (Gio Wiederhold)</td>
<td></td>
<td>May 1, 1972</td>
</tr>
<tr>
<td>Position Paper for the Second Annual Communications Conference at California State University at San Jose, Jan. 24-25, 1973</td>
<td></td>
<td>OCT 15, 1972</td>
</tr>
<tr>
<td>Instrumentation in a Time-shared Environment (Reynolds)</td>
<td></td>
<td>APR 1970</td>
</tr>
<tr>
<td>Comparison of ACME and Three IBM Time-Sharing Systems (Frey)</td>
<td></td>
<td>JUL 12, 1972</td>
</tr>
<tr>
<td>Tymshare Networkfeasibility (Stainton)</td>
<td></td>
<td>JAN 22, 1973</td>
</tr>
<tr>
<td>Visitor's Information Sheet (Germano)</td>
<td></td>
<td>JAN 15, 1973</td>
</tr>
<tr>
<td>An Assessment of Current Developments in Computer Technology and Their Significance for Development at the Stanford Medical Center (Wiederhold)</td>
<td></td>
<td>MAY 1, 1972</td>
</tr>
<tr>
<td>Beyond Lisp (Wiederhold)</td>
<td></td>
<td>MAR 29, 1972</td>
</tr>
<tr>
<td>The Use of a General-Purpose Time-Shared Computer in Physiology Research (Wiederhold)</td>
<td></td>
<td>JUN 30, 1972</td>
</tr>
<tr>
<td>Interactive Use of a Time-sharing System for Medical Laboratory Support (Crouse/Wiederhold)</td>
<td></td>
<td>JAN 4, 1970</td>
</tr>
<tr>
<td>Sharing Patient Data Files (Wiederhold)</td>
<td></td>
<td>OCT 16, 1972</td>
</tr>
<tr>
<td>Consulting Schedule (Germano)</td>
<td></td>
<td>OCT 16, 1972</td>
</tr>
<tr>
<td>Programs Available on Campus (Liere)</td>
<td></td>
<td>OCT 17, 1969</td>
</tr>
<tr>
<td>Statistical Programs and Subroutines Available at ACME (Whitner)</td>
<td></td>
<td>OCT 30, 1970</td>
</tr>
<tr>
<td>The ACME File System (Miller)</td>
<td></td>
<td>FEB 27, 1969</td>
</tr>
<tr>
<td>Choice of Tape Units on 360/370 Equipment (IBM) (Wiederhold/Stainton)</td>
<td></td>
<td>AUG 25, 1972</td>
</tr>
<tr>
<td>A Choice of Language to Support Medical Research (Wiederhold)</td>
<td></td>
<td>DEC 6, 1972</td>
</tr>
<tr>
<td>Need For a Medical Applications Oriented Data Base Protocol and Support Facility (Meyl)</td>
<td></td>
<td>DEC 6, 1972</td>
</tr>
<tr>
<td>Proposal for Small Computer Service by ACM (Stainton)</td>
<td></td>
<td>MAR 11, 1972</td>
</tr>
<tr>
<td>Paging Rates for a Joint Stanford Computing Facility (Wiederhold)</td>
<td></td>
<td>MAR 21, 1977</td>
</tr>
<tr>
<td>Remarks on Paging Reference Distribution (Kindfleisch/Wiederhold)</td>
<td></td>
<td>DEC 19, 1972</td>
</tr>
<tr>
<td>Trip Report – SHARE Interim Meeting, Dec. 3-6, 1972 (Frey)</td>
<td></td>
<td>DEC 20, 1972</td>
</tr>
<tr>
<td>Specification of FORTRAN String Handling (G. Wiederhold)</td>
<td></td>
<td>DEC 20, 1972</td>
</tr>
<tr>
<td>Mini-computer Support at SUMEX (Wiederhold)</td>
<td></td>
<td>SEP 7, 1972</td>
</tr>
<tr>
<td>Overview of the TCAM System (Stainton)</td>
<td></td>
<td>NOV 17, 1972</td>
</tr>
<tr>
<td>Test of ACM FORTRAN Code on XDS Compiler (Jamtgaard)</td>
<td></td>
<td>NOV 9, 1972</td>
</tr>
</tbody>
</table>
ADMINISTRATION AND UTILIZATION

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-3</td>
<td>ACME Note Index: Update and Listing - Administrative Aide Instructions (Hassett/Baxter)</td>
<td>JUL 17, 1972</td>
</tr>
<tr>
<td>AA-4</td>
<td>ACME User Accounting - Administrative Aide Instructions -- Update & Listing (C. Miller/Baxter)</td>
<td>JUL 17, 1972</td>
</tr>
<tr>
<td>AA5P-1</td>
<td>ACME Accounting Programs at Campus Facility (Baxter)</td>
<td>NOV 15, 1972</td>
</tr>
<tr>
<td>AA6-2</td>
<td>APUR -- Update & Listing (Baxter)</td>
<td>JUL 10, 1972</td>
</tr>
<tr>
<td>AAU71</td>
<td>Annual Dollar Usage At ACME (C. Miller)</td>
<td>SEP 13, 1971</td>
</tr>
<tr>
<td>AAU72</td>
<td>Annual Income by Category (Baxter)</td>
<td>AUG 4, 1972</td>
</tr>
<tr>
<td>ACM-1</td>
<td>Summary of Campus/ACME Merger Study (Jamtgaard)</td>
<td>NOV 30, 1971</td>
</tr>
<tr>
<td>ADISK-1</td>
<td>ACME Disk Write Times (Germano)</td>
<td>NOV 22, 1972</td>
</tr>
<tr>
<td>#AFE-13</td>
<td>IBM Field Engineering (F.E.), Data Processing (D.P.) and Office Products (O.P.) Divisions (Lang)</td>
<td>APR 27, 1973</td>
</tr>
<tr>
<td>AORG-3</td>
<td>ACME Organization Chart (Baxter)</td>
<td>OCT 27, 1972</td>
</tr>
<tr>
<td>APAGE-1</td>
<td>ACME Service Rates (Jamtgaard)</td>
<td>APR 16, 1972</td>
</tr>
<tr>
<td>APAGEK-1</td>
<td>Description of ACME Service Rates (Jamtgaard)</td>
<td>APR 13, 1972</td>
</tr>
<tr>
<td>ARATE-1</td>
<td>Revised Rate Structure for ACME Facility Services (Jamtgaard) submitted to NIH, nine pages</td>
<td>APR 16, 1972</td>
</tr>
<tr>
<td>AU-31</td>
<td>Monthly Usage at ACME (Class/Baxter)</td>
<td>FEB 22, 1973</td>
</tr>
<tr>
<td>YPRANL-1</td>
<td>Distribution of Print Job Lengths (Germano)</td>
<td>NOV 10, 1972</td>
</tr>
</tbody>
</table>

SYSTEM INFORMATION

GENERAL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD-4</td>
<td>Useful Additions to the ACME Software (Wiederhold)</td>
<td>SEP 19, 1972</td>
</tr>
<tr>
<td>AZ-4</td>
<td>Current Size of ACME (Wiederhold/Frey)</td>
<td>JUN 7, 1971</td>
</tr>
<tr>
<td>CHANGE-1</td>
<td>Change(s) to the ACME System (S. Miller)</td>
<td>JUL 27, 1971</td>
</tr>
<tr>
<td>CO-2</td>
<td>Configuration Changes at ACME and Their Effects (Wiederhold)</td>
<td>JUN 3, 1969</td>
</tr>
<tr>
<td>CSPM-1</td>
<td>Design Considerations for a Digital Analog Simulator on ACME (Bjelmaeland)</td>
<td>OCT 15, 1971</td>
</tr>
<tr>
<td>CSMPI-1</td>
<td>Interactive Continuous System Modeling Program (J. Hu)</td>
<td>APR 16, 1972</td>
</tr>
<tr>
<td>IO-2</td>
<td>Text of Proposed I/O Supervisor (Sturgis/Miller)</td>
<td>JUN 30, 1966</td>
</tr>
<tr>
<td>IOA-2</td>
<td>I/O Allocation While Processing I/O (Miller/Wiederhold)</td>
<td>AUG 25, 1966</td>
</tr>
<tr>
<td>RC-1</td>
<td>Control Language for an Interactive Computing System (Wiederhold)</td>
<td>MAY 23, 1966</td>
</tr>
<tr>
<td>WAA-1</td>
<td>Writeup Conventions (Wiederhold/Cummins)</td>
<td>JUL 28, 1966</td>
</tr>
<tr>
<td>#WAC-4</td>
<td>ACME Routines: Listing and Description (Frey/Miller)</td>
<td>MAR 15, 1973</td>
</tr>
<tr>
<td>WAU-1</td>
<td>AUSCA--An Almost Universal Small Computer Assembler (de la Roca)</td>
<td>JUN 30, 1969</td>
</tr>
<tr>
<td>WCDS-1</td>
<td>SYS/360 Standard Instruction Set Sorted on Machine Code (Miller)</td>
<td>MAR 20, 1970</td>
</tr>
<tr>
<td>WCTR-1</td>
<td>ACME System Core Timing Results (AMPEX vs. IBM) (Frey)</td>
<td>NOV 29, 1971</td>
</tr>
<tr>
<td>WSSYS-1</td>
<td>ACME System Analysis--BCU (Smith)</td>
<td>JUN 6, 1960</td>
</tr>
<tr>
<td>XPL-1</td>
<td>Inferred Syntax and Semantics of PL/S (Wiederhold/Ehrman)</td>
<td>OCT 15, 1971</td>
</tr>
</tbody>
</table>
DEC-1 Decimal Arithmetic in ACME (Wiederhold)
FEB 14, 1972
DP-1 Proposal for Decimal Arithmetic in ACME (Wiederhold)
FEB 14, 1972
FMT-7 Input/Output Statement Types (Wiederhold/Frey)
OCT 20, 1968
GLC-2 Line Number Conversions (Wiederhold)
SEP 7, 1968
GLN-3 Line Number Entries in Symbol Table (Breitbard/Granieri)
AUG 16, 1968
KO-8 Type Table for Operators (Breitbard)
MAY 19, 1969
LM-5 Edit Commands (Berman)
NOV 18, 1971
NB-4 Execution Time Parameter Checking (Liere/Miller)
JUN 11, 1970
NC-8 Character String Storage Organization and Handling (Breitbard/Wiederhold)
NOV 12, 1971
ND-5 Array Descriptors in PL/ACME (Breitbard/Granieri)
AUG 18, 1968
NP-5 Internal Procedures with Parameters (Breitbard)
JUN 24, 1968
NS-3 Sequence of Processes for an Input Line (Wiederhold/Berman)
JAN 14, 1972
NT-10 Symbol Table in PL/ACME (Wiederhold/Liere)
AUG 18, 1970
ONA-4 System-Defined UN Conditions (Feinberg)
JUN 26, 1969
ONR-2 System Execution of ON-Conditions (Feinberg)
JAN 10, 1968
OO-2 Staff Guidelines for System Error Handling (Wiederhold)
MAY 19, 1970
PK-1 Filing and Linking of Statements (Breitbard/Wiederhold)
MAX 1, 1967
PP-1 LISP Under ACME (Borns)
JAN 6, 1971
PPA-1 ACME/LISP Internal Documentation (Borns)
JUL 14, 1971
PR-10 Prologue (Granieri/Wiederhold)
NOV 12, 1971
PS-1 Proposed PL/ACME Specifications--Arrays and Parameters (Moore/Breitbard)
APR 11, 1966
PW-10 Switches (Granieri/Wiederhold/Berman)
NOV 13, 1971
REG-4 Register Usage (Liere)
APR 13, 1970
RST-1 Proposal to Allow Release of Symbol-Table pages in Production Jobs (Wiederhold)
NOV 23, 1971
TU-1 The INSTRUCTION GET SHARED (Granieri)
SEP 9, 1968
VP-2 Code for PROCEDURE Statement (Wiederhold/Granieri)
SEP 12, 1969
VR-1 Code for Restarting (Wiederhold)
SEP 3, 1968
WAUR-2 PL/ACME Addresses (Breitbard/Wiederhold)
APR 7, 1969
WASH-3 ACME Assembler (Breitbard)
AUG 25, 1972
WATB-2 Adding Instructions to the Assembler (Breitbard)
OCT 31, 1972
WCL-11 Classification of Keywords in PL/ACME (Breitbard)
JUN 28, 1969
WCM-2 ACME Compiler COMMON Blocks (Feinberg)
JUL 23, 1970
WCSO-3 Calling Sequences in PL/ACME and User-Written Functions (Breitbard/Granieri)
AUG 15, 1969
WD-12 System Debugging Routines (Miller/Liere)
AUG 28, 1970
WSA-2 Dynamic Arrays--Current Implementation and Notes (Wiederhold/S. Miller)
SEP 13, 1971
WDL-2 PL/ACME Words and Built-In Subroutines (V. Wiederhold/C. Sanders)
DEC 1, 1972
WDR-5 ACME Error Dictionary - Part 1 (1-199) (Liere)
APR 20, 1970
WEN-1 ACME Error Dictionary - Part 2 (200-599) (Liere)
APR 17, 1970
WFR-5 ACME Subroutine FAULT: Error Handling within the ACME System (Liere)
APR 22, 1970
WGET-6 Subroutines for Compiling Input/Output Calls (Wiederhold)
MAY 77, 1970
WPI-4 ACME Subroutine PICK (Wiederhold/Berman)
Character String Expanding, Condensing, and Moving Routines for the Compiler (Wiederhold)

Mar 6, 1968

Adding Library Subroutines to PL/ACME (Liese/Miller)

Jun 11, 1970

ACME System Functions (Feinberg)

Jul 10, 1969

Symbol Table, Program and Data Routines (Breitbard)

Oct 23, 1968

Assembly Language Character String Routines (Sanders)

Apr 9, 1968

Assembly Language Utility Program (Miller/Liese)

Feb 23, 1969

1800 Flow Charts (Mundley)

Mar 20, 1973

WRITE Flowchart (Wiederhold)

Jan 10, 1968

Flowchart of ARITH and ADVANCE (Wiederhold)

Sep 21, 1970

GET Flowchart (Wiederhold)

Aug 13, 1970

LIST Flowchart (Wiederhold)

Jul 3, 1969

Flow Chart for ACME System Program MODIFY (Berman)

Jan 10, 1972

PROGRAM Flowchart (Wiederhold)

Jan 12, 1968

PICK Flowchart and Tables (Berman)

Jan 10, 1972

PL/ACME Flowchart (Wiederhold)

Jun 4, 1969

READ Flowchart (Wiederhold)

Jan 14, 1968

Multi-Prograrming with PL/ACME (Cummins)

Apr 7, 1967

Communication Port/Terminal Protection (Wiederhold)

Mar 6, 1972

Memory Allocation in ACME (Breitbard/Wiederhold)

Dec 12, 1972

ACME System Flow Diagram—General Flow of Time-Sharing Monitor (Wiederhold)

Jan 26, 1966

Attention Interrupt Routines (Sanders/Stanton)

Apr 30, 1973

User Status Array (Breitbard/Wiederhold)

Aug 2, 1968

Temporary Working Storage Function Table (Granieri/Wiederhold)

Feb 28, 1973

ACME Subroutine YIELD to Commutator: Subroutine YSET = set ENTRY2 (Frey/Granieri)

Oct 24, 1972

Flow of Light Logic in YIELD (Wiederhold)

Dec 15, 1971
INPUT/OUTPUT

TERMINALS AND DISPLAYS

H120CH-1 Telephone Line Communications for Terminals at Speeds of 80 and 120 Characters/Second (Stainton) JUL 5, 1972

H130CH-1 Telephone Line Communications for Terminals at Speeds of up to 30 Characters/Second (Stainton) JAN 29, 1973

KA-5 2741 Transmission Code (Cummins/Wiederhold) DEC 5, 1970

KASCII-2 ASCII Use of the ASCII Character Set (Stainton) JAN 29, 1973

KB-4 2741 Typewriter Keyboard (Breitbard) JUN 15, 1970

KCT-4 Terminal Conversion Tables (Stainton) JAN 9, 1973

KE-7 EBCDIC Code for Full Character Set (Wiederhold) JAN 12, 1973

KOM-1 Communication Development (Wiederhold) JAN 4, 1972

PA-2 Response to 2741 Attention Key (Wiederhold/Cummins) AUG 2, 1966

USP-1 Data Handling Capabilities on the ACME System (Feigenbaum) NOV 17, 1969

WDERM-1 Terminal In and Output for 3270 Displays (Wiederhold) DEC 10, 1971

WIN-3 Internal Sub-routine IMAGE (Wiederhold) OCT 14, 1969

WKT-8 TERMINIO: Terminal Input/Output (Stainton) DEC 19, 1972

FILES

CRASH-1 Recovery from Disk Failures (Frey) SEP 24, 1971

PA-9 ACMO File System--Data Sets (Frey) NOV 27, 1972

PR-6 ACMO File System--Control Block Formats (Frey) JUN 19, 1972

FBS-1 Proposal to Rewrite the ACMO File System (Sanders) MAR 22, 1966

*FU-5 ACMO File System--Coding (Frey) APR 8, 1971

FVD-1 File Utility Program PDMP (Frey) NOV 19, 1969

FDR-1 User Tape Dump and Restore (Frey) SEP 16, 1971

FIO-1 ACMO File Input/Output (Girardi) MAY 8, 1969

*FLC-3 File System Logical Flow--Text Files Processing (Frey) MAY 5, 1973

FLI-3 File System Logical Flow--Miscellaneous Functions (Frey/Gianni) APR 27, 1971

FLU-3 File System Logical Flow--Data Files Processing and Index Manipulation (Frey/Lew) JUN 29, 1971

FOCT-1 Opening and Closing a User Disk Pack (Frey) OCT 18, 1972

FTR-2 Restoring Blocks Onto Disk From Tape (Lew) FEB 19, 1972

FWM-1 File Utility Restore and Move Programs (Frey) JAN 12, 1972

FSEC-1 File Security (C. Wiederhold) FEB 25, 1971

FSTATE-1 File System Statistical Summary (J. Ru) APR 29, 1971

FTR-2 ACMO/OS Files Conversion (Frey) OCT 4, 1972

FUTIL-2 File System Utility Library (Frey) OCT 18, 1972

FV-4 File Addressing (Frey)
REAL-TIME

PDPI-1
PDP-11 Inventory (Law)
MAR 20, 1973

UART-5
Access to Real-Time Directory Entries (Frey/Breverman)
OCT 20, 1972

UD-5
1800 Users—Time Sharing System (Crouse)
NOV 3, 1969

UPDP-1
PDP-11 Hanging the 360 Channel (Briggs)
MAR 1, 1972

UPRO-1
Procedure for Assembling a Program for the 1800 with the 360 Batch Assembler (Hundley)
DEC 15, 1972

UDS-1
1800 Voltage and Digital Scales (Crouse)
AUG 21, 1968

WEXC-2
ACME Dummy Appendages for EXCP I/O (Sanders/Stainton)
MAR 13, 1973

UPD-1
Disk Monitor for the PDP-11 (Briggs)
JUN 21, 1971

WPDPA-1
Index for PDP-11 Software Binder in the Computer Room (Briggs)
AUG 9, 1971

WPDPC-1
Disk Monitor Utility Program for the PDP-11 (Briggs)
AUG 16, 1971

WPD-1
Program to Create Temporary Directory for Real-Time Pfiles (Cummins)
APR 3, 1968

HARDWARE

CL-2
Interrupt Level Status Words for 1800 (Miller)
AUG 26, 1966

CN-6
Configuration of Machine (Wiederhold)
JUN 6, 1972

CQ-3
1800 Configuration (Wiederhold)
SEP 19, 1969

FLX-1
Specifications of 270X Data Adapter Unit and 270Y Remote Experimental Terminals (Sederholm)
AUG 1, 1967

MAP-1
MPX/User Simulator (Matheson)
Engineering Note 060
SEP 11, 1972

MAC-1
IBM 7201 Parallel Data Adapter Simulator (Matheson)
Engineering Note 061
SEP 18, 1972
<table>
<thead>
<tr>
<th>Document Code</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAT-1</td>
<td>Analog Transmission at ACME (Direct Line) (Holtz)</td>
<td>APR 9, 1968</td>
</tr>
<tr>
<td>HB-1</td>
<td>Level Shifter (Bridges)</td>
<td>JUN 26, 1967</td>
</tr>
<tr>
<td>HC-1</td>
<td>16-Channel, 8-Bit Synchronous A-to-D Converter (Flexer)</td>
<td>AUG 30, 1967</td>
</tr>
<tr>
<td>HD-1</td>
<td>ACME Digital Display—Engineering Description (Flexer)</td>
<td>AUG 24, 1967</td>
</tr>
<tr>
<td>HDC-2</td>
<td>2702-2741 Direct Connection (Cummins)</td>
<td>NOV 21, 1964</td>
</tr>
<tr>
<td>HDMU-1</td>
<td>Plotter Down for Dean's Conference Room and Mill (Cower)</td>
<td>JUN 11, 1970</td>
</tr>
<tr>
<td>HDIC-1</td>
<td>Digital Test Box (Holtz/Osborne)</td>
<td>JUL 18, 1968</td>
</tr>
<tr>
<td>HDR-1</td>
<td>Proposal for a Standardized Demand-Response Interface (Cummins)</td>
<td>FEB 26, 1970</td>
</tr>
<tr>
<td>Hess-1</td>
<td>8000 Error Alarm (Osborne)</td>
<td>JUL 15, 1968</td>
</tr>
<tr>
<td>HGO-1</td>
<td>Replacement of the 270X and 270Y (Stubbs)</td>
<td>DEC 8, 1970</td>
</tr>
<tr>
<td>HGCL-2</td>
<td>Genetics Lab Connection in Room 8007 (Osborne)</td>
<td>JUN 2, 1969</td>
</tr>
<tr>
<td>HMOC-1</td>
<td>Cable Voltage Levels for the Sanders (Cower)</td>
<td>JUL 9, 1971</td>
</tr>
<tr>
<td>HK-1</td>
<td>High-Speed Serial Digital Transmission (Flexer)</td>
<td>AUG 23, 1967</td>
</tr>
<tr>
<td>HKR-1</td>
<td>4 Bit Digital Sequence Controller, Serializer, and Tone Generator (Osborne)</td>
<td>MAR 26, 1970</td>
</tr>
<tr>
<td>NLB-1</td>
<td>LINDA: The 1800 Baby Sitter (Osborne)</td>
<td>MAR 24, 1970</td>
</tr>
<tr>
<td>NMP-1</td>
<td>Manual Process Intermittents to the 1800 (Flexer)</td>
<td>AUG 26, 1967</td>
</tr>
<tr>
<td>HPDA-1</td>
<td>2701 PDA to External Device Interface (Stainton)</td>
<td>MAY 31, 1968</td>
</tr>
<tr>
<td>HPFF-10</td>
<td>PDP-11 to 360 Connection (Van der Lane/Gomez)</td>
<td>FEB 23, 1971</td>
</tr>
<tr>
<td>HFW-1</td>
<td>A Proposed Method of Protecting Computing Machinery from Power Surges (Humley)</td>
<td>JAN 31, 1972</td>
</tr>
<tr>
<td>HQ-2</td>
<td>ACME Power Supplies (Holtz/Curtis)</td>
<td>APR 9, 1969</td>
</tr>
<tr>
<td>HR-1</td>
<td>Five Integrated Circuit Printed Cards (Flexer)</td>
<td>AUG 21, 1967</td>
</tr>
<tr>
<td>HKA-1</td>
<td>6-Bit Full Adder Printed Circuit Card, Models 3 and 4 with Three Dual In-Lines per Bit (Flexer)</td>
<td>AUG 21, 1967</td>
</tr>
<tr>
<td>HKB-1</td>
<td>20-Bit Buffered Register, Model 2. Printed Circuit Card. Using Motorola Dual In-Lines (Flexer)</td>
<td>AUG 21, 1967</td>
</tr>
<tr>
<td>HRI-1</td>
<td>12-Bit 2e Complement, Inverter Printed Circuit Card (Flexer)</td>
<td>AUG 18, 1967</td>
</tr>
<tr>
<td>HR-1</td>
<td>1800 Real-Time Clock (Flexer)</td>
<td>AUG 26, 1967</td>
</tr>
<tr>
<td>HRU-1</td>
<td>6-Bit Latches, Synchronous, Up-Down Counter Printed Circuit Card, Model 2 (Flexer)</td>
<td>AUG 21, 1967</td>
</tr>
<tr>
<td>HRPST-1</td>
<td>COMPLUT Interface (Ardt) Engineering Note #937</td>
<td>DEC 29, 1970</td>
</tr>
<tr>
<td>HSC-1</td>
<td>Sampling Clock (Holtz/Lerner)</td>
<td>MAY 5, 1967</td>
</tr>
<tr>
<td>HSCU-1</td>
<td>Computer Center Lightbox (Holtz/Osborne)</td>
<td>APR 7, 1969</td>
</tr>
<tr>
<td>HSW-3</td>
<td>ACME Data-Expanded (Holtz/Curtis)</td>
<td>APR 21, 1969</td>
</tr>
<tr>
<td>HSWG-1</td>
<td>2741 Data Plug Installation (Wiley)</td>
<td>DEC 27, 1967</td>
</tr>
<tr>
<td>HSWD-1</td>
<td>Cable Interconnecting Box--Room S101 (Wiley)</td>
<td>DEC 27, 1967</td>
</tr>
<tr>
<td>HSWF-1</td>
<td>User Interfacing Units--Room S101 Cabinet (Curtis)</td>
<td>DEC 27, 1967</td>
</tr>
<tr>
<td>HT-2</td>
<td>IBM 1800 Input/Output Terminals (Holtz)</td>
<td>MAY 7, 1969</td>
</tr>
<tr>
<td>HTST-1</td>
<td>Terminal Extension Cable (Stainton)</td>
<td>MAR 9, 1973</td>
</tr>
<tr>
<td>HVB-1</td>
<td>Analog Transmission by Frequency Modulation (Holtz)</td>
<td>NOV 27, 1968</td>
</tr>
</tbody>
</table>
HWEA-1 Summary of Western Electric (Telephone Company) Analog Modems
(Stanton)
JAN 17, 1972

HXU-1 Interface between a PDP-8 and an IBM 1800 (Holts)
MAR 28, 1969

HZ-1 Biochemistry Lab Connection--Stryer (Holts/Curtis)
NOV 24, 1967

KW-1 A Warning About IOHALT and the 2702 (Cummine)
JUL 10, 1968

LIDANS-1 Lightbox for Installation on Terminals Using ANSI Conventions
(Stanton)
SEP 11, 1972

LIDL-1 IBM 2741 Lightbox for installation on terminals using direct-line
connection (Holts)
NOV 27, 1968

LIDS-1 IBM 2741 Lightbox for Installation on Terminals Using a Data
Set Connection (Holts)
NOV 21, 1968

LK 1 Proposal for the ACME/Campus Link (Girardi)
NOV 13, 1970

OT-1 OS/360 Timing for Large-Capacity Storage (Miller)
MAY 9, 1967

YTNM-2 Loading Printer Buffers with TNMD (Emerson/Frey)
AUG 28, 1970

OPERATING SYSTEM

AUC-6 360/50 Crash Frequency Chart (Class)
DEC 14, 1972

BUGS-1 ACME System Problems (Miller/Wiederhold)
JUL 13, 1970

CAB-3 User Hardware Installations -- ACME Connected (Class)
JAN 4, 1973

COMMVTR-2 Change OS Appendage Vector Table (Stainton)
SLAC TM#46
APR 18, 1973

CP-5 ACME Catalogued Procedures (Frey)
AUG 10, 1970

CT-21 ACME Terminal Listing (Class)
MAR 14, 1973

DA-10 Device Addresses (Miller/Granieri)
JAN 15, 1973

DC-5 Device Names (Smith)
FEB 17, 1969

EFAP-1 Temporary PRINOPN Modification (Bassett)
MAY 22, 1972

KD-2 Card Punch to Hexadecimal Conversion (Wiederhold)
SEP 9, 1968

DA-9 Contents of ACME's 3M Disk Packs (Frey)
APR 23, 1973

OB-2 OS/360 System Generation (Glanckopf/Allen)
APR 11, 1968

OEB-2 Multiple Exsect DEB Builder (Sanders)
MAR 1, 1972

OEX-1 OS/360 FORTRAN H Version II (Release 14) Changes in Passing
Names (Glanckopf)
APR 16, 1968

OFA-1 Additional FORTRAN Language Facilities (Miller)
OCT 11, 1968

OL-7 Loading ACME, ACME29, and ACME02 Systems (Class/Granieri/Sutter)
FEB 19, 1971

OM-4 ACME System Modules (Frey)
DEC 31, 1969

OM-1 System Component Naming Conventions--OS/360 (Allen)
NOT DATED

OR-15 Procedure for Writing File Restore Tapes (Class)
NOV 29, 1972

OSAPP-1 Notes on OS Appendages (Stainton)
SLAC TM#3

OSF-2 APAR Submission for 05 Component Problems (Glanckopf)
JUL 30, 1968

OSM-3 ACME Modifications to OS/360 (MVT) (Frey)
MAY 10, 1971