Core Research and Development

believe that a promising approach is to enrich the representational structure of our
network language, so that the program knows not only that "X causes Y", but also has
enough detailed knowledge so that it can explain why the connection is plausible. Such
a program could aid the knowledge acquisition process by automatically critiquing the
evolving network. Moreover, the program would ask questions to help it fill in the
gaps and lack of coherency it detects.

Using the above example, after being told an implication (ordinary heuristic rule)
relating brain-mass-lesion and brain-tumor, the program would attempt to classify these

arme age nenraccae Ar cnhetanrase nata tha lacatinne nAd ienlata tha nartisrnlar Aaneal
LGI 1119 dd PiIUVLLIOWO VI JuvdldlIved, HIVIG '-llc lU\-dLAUIlB, allu wviawe l.llU paliivuial \'auaal

interaction (mass causes a lesion). The key to such a capability is a representation
language that defines concepts in terms of a relatively small number of relations (such
as the conceptual dependency notation of Schank), plus generic knowledge of physical
processes (e.g., the idea of a mass growing in size severing an enclosing substance). A
great deal of research in qualitative reasoning of physical processes [3], particularly the
research of Wendy Lehnert, lays the foundation for this kind of investigation.

The learning program we will construct could be termed "the advice requester.” We
believe that the ability to ask good questions is the mark of a good student or
researcher, and it can greatly focus the learning process. Asking good questions requires
relevant background knowledge, so the learner can learn something new by relating it to
some facts or some general framework he already understands. This process can be
complex, because there are levels and perspectives for understanding. What may at first
appear consistent, could become puzzling later as new gaps appear in an evolving
network. Concepts in fact change their meaning as exceptions and complex special
cases come to light.

Learning by asking is a form of knowledge-intensive learning, to be contrasted with
research in automatic learning (becoming more efficient). For knowledge engineering,
such an approach is a dramatic switch from giving the program surface causal rules that
it in no sense understands, to giving a program knowledge of underlying causal models
that enable the program to justify its causal network. Most importantly, these models
provide a set of expectations of states and faults that might be included in a causal
network.

To take an example from another domain in which we are working, iron casting, one
fault is a shrinkage cavity. Generic knowledge would indicate that a cavity is an
absence of material, and that for casting the source of material is what is poured and a
reservoir (part of the mold) to allow for shrinking. A built-in generic model would
indicate three reasons why a source of material does not arrive at the sink: insufficient
supply (reservoir is too small), supply lost by leaking, and blocked flow from source to
sink. These three generic causes set up expectations for specific causal processes that
will appear in the state network. A given knowledge base might refer to a model only
once, but a library of such models would form the basis of a powerful knowledge
acquisition program that could learn about new domains fairly quickly. We believe that
this generic library of processes is part of what we call common sense knowledge.

An advice requester that would be as proficient as our best knowledge engineers is
obviously not going to be constructed in a year or two. Our approach will be first to
study the causal networks we have constructed in medicine and casting, and re-represent
the knowledge in structures that include the generic, underlying abnormal processes.
Next, using a method we have found to be advantageous in the past for refining a
knowledge representation, we will construct a simple teaching program that can explain
such a causal network and help the student critique an incomplete network. Ultimately,
we believe that teaching students to think like knowledge engineers, that is to learn the
process of asking good questions, may be even more valuable than directly trying to
convey our products, the constructed knowledge bases.

Privileged Communication 151 E. H. Shortliffe

Core Research and Development

4. Qualitative Simulation
GOALS

In the context of the Molgen-II project, we are exploring the process of scientific
theory formation and modification by computer. Qualitative simulation of biological
processes is an important part of this goal because it is necessary to ask about the
results of hypothetical experiments in the course of theory formation and running a
detailed simulation is often too expensive.

MOTIVATION

We are carrying out this research by studying a specific biological system: the regulatory
genetics of the E. Coli tryptophan operon (the trp system). In the mid 1960's Dr.
Charles Yanofsky (who is a collaborator with us on this project) began to probe the
existing theory of gene regulation in this operon. Yanofsky's initial experiments
revealed a number of anomalies. Since that time, Yanofsky's research (which continues
today) resulted in the discovery of a totally new mechanism of prokaryotic gene
;egulation, and continues to refine our knowledge of exactly how this mechanism
unctions,

Our goal is to build a machine learning system which will accept an initial theory of
gene regulation equivalent to that which Yanofsky began to probe in the 60's. We will
then present our system with a series of experimental results based on Yanofsky's early
observations. The learning system will then propose, implement, and attempt to
confirm possible modifications to its theory of gene regulation.

We view theories - such as that of the trp operon's function - as problem solvers. The
inputs to these problem solvers are descriptions of hypothetical experiments. The
problem solver's outputs are descriptions of the predicted results of these experiments.
Thus our learning program will be attempting to improve the predictive performance of
a problem solver in bacterial regulatory genetics.

This research in machine learning presumes the existence of a simulator of the trp
system. Building such a problem solver in itself raises interesting Al research issues in
qualitative simulation. And building such a system in a form which can be reasoned
about by another program (the learning element) complicates the problem even further.

Below we discuss our past work on the construction of two versions of such a problem
solver ("the simulator”). We then outline a number of interesting research issues which
this work has raised, and the approaches we plan to pursue in the construction of the
simulator.

BACKGROUND

Version I

An exploratory version of the system was built in the Spring of 1984. The system was
constructed using the UNITS system - one of the first general-purpose expert system
building tools.

This first system was more of a success as a static knowledge base than -as a dynamic
simulator. Building this system forced us to come up with a concrete conceptualization
of the problem domain: we determined the full range of objects the system would have
to simulate, and considered what types of properties and internal states these objects
have, and how they should be represented within the UNITS system. This knowledge
base was examined several times by our biologist collaborators (Yanofsky and Dr.
Robert Landick - a post-doctoral fellow in Yanofsky's lab) to help us detect errors and
omissions.

E. H. Shortliffe 152 Privileged Communication

Core Research and Development

The first systern never contained much simulation capability. We did provide a
mechanism whereby the state of the transcription mechanism could be determined after
the user specified experimental conditions such as approximate tryptophan
concentration and whether or not various objects such as the trp-R repressor and the
trp promotor contained deleterious mutations or not. The simulation capability was
essentially provided by backward chaining on the slot values of relevant units, with the
actual inferences carried out by Lisp code attached to some slots.

We learned a number of things from this prototype system. The knowledge base

w
created hecame a concrete record of the objects relevant to problem solving in thi

Wi Wil bl UwiwiAldilv - WA AT WwA Wik AWWNTL W LT VUJVVW AWEW T WRILS Pl\l\l lllll -
domain, and of design decisions regarding their representations. We also discovered a
number of things about the UNITS system:

(5
S

1. Tts knowledge base editor ran fairly slowly
2. We encountered and fixed several significant bugs
3. Its rule language is fairly awkward

4. Its inheritance hierarchy lacked some important features, such as the ability
of a given object to inherit slots from more than one parent class.

-(Note that points 1 and 2 result from UNITS having been developed and maintained
within a university research environment.)

We also confirmed an observation made long ago by other AI researchers. Previous
work has shown that the simpler a language is, the more amenable it is to being both
executed by one entity and interpreted by another entity (such as an explanation
facility). This is one reason expert systems are now often encoded in production rules
rather than Lisp. It became quite obvious that if our learning element is forced to
reason about a simulator containing Lisp procedures, it would be significantly more
complex than if the simulator were written in another language. Simple as the syntax
of Lisp is, even a reasonable subset of full Interlisp would contain quite a large number
of fairly complex constructs, and would complicate the learning element tremendously.

We also made an interesting observation about how building an expert system can help
experts think about their own domain. We will consider two examples of this
particular idea. Both involve subclass units which were defined in the knowledge base
by Karp and then discussed with Yanofsky and Landick. One subclass was called
"DNA Segments” and was intended to include contiguous segments of DNA with
discrete functions, such as: promoters, terminators, genes, and operators. Among the
properties associated with this class were: sequence, position within some larger
functional piece of DNA, and "generalized sequence” - an attempt to capture those
sequence elements common to a given subclass of DNA Segments such as promoters.
The other defined class of interest was termed "Molecular Switches”. This was an
attempt to represent the general notion of a molecule with two functional states, where
transitions between states are caused by the binding and dissociation of the molecule
from some other molecule. Examples of Molecular Switches are operators, promoters,
and repressors.

In both cases Yanofsky and Landick expressed interest in these concepts, and noted that
biologists had coined no terms for them. This suggests that these concepts are in some
sense new to biologists. We hypothesize that the process of constructing an expert
system will naturally lead to the identification of such general concepts - or,
equivalently - to the creation of analogies between known concepts.

The reason for this is that in attempting to represent the behaviors of N different
entities, it is often much more efficient (with respect to development time and code

Privileged Communication 153 E. H. Shortliffe

Core Research and Development

volume) to develop one general-purpose procedure which yields the N different
behaviors given different parameter bindings, than it is to develop a different procedure
for all N cases. It is the knowledge engineer's job to search for such general
procedures.

Version I1

Recently we have begun building the next version of the simulation system. We are
implementing this using the KEE knowledge engineering tool developed by IntelliCorp.
This will free us from all the limitations of the UNITS system mentioned above. We
have accomplished the initial obvious goal of porting the knowledge base defined using
UNITS to KEE.

Related Work

Recently a significant amount of work has been done in AI in Qualitative Simulation
(de Kleer and Brown, Forbus, Patil, Kuipers). While this work is somewhat relevant to
the research we propose, there are several reasons why it is not sufficient.

First, most of this work attempts to simulate systems described by Physics using
differential equations. Much of this work is an attempt to generalize numerical
differential equations into qualitative differential equations. However, Biology is a
much younger science than Physics, and as such does not describe its mechanisms to
nearly such a quantitative degree. Differential equations are rarely if ever used by
Molecular Biologists, and hence qualitative differential equations do not

RESEARCH PLAN

The next step is to define the behavior for these objects so that actual simulations can
be executed. This raises the question: in what language should this behavior be
defined?

We rule out Lisp for reasons discussed earlier. We also believe production rules are
not a good language for defining this behavior, for reasons that will be outlined below.
We now discuss the features we believe the simulator should provide, describe research
questions these features raise, and consider what constraints such a simulator imposes
on an underlying implementation language.

Reasoning At Varying Levels Of Detail

We believe it is important that the simulator be able to reason at varying levels of
detail depending upon the demands of a particular problem. That is, it should be
possible for the simulator to solve many problems without simulating every single
process it knows about in the most detailed manner possible. Rather, given a problem
statement the simulator should perform meta-level reasoning to determine which
processes to simulate, and at which of several possible abstraction levels to simulate
each process. For example, in an experiment involving an otherwise normal E. Coli
cell with a deleterious mutation in its trp-R protein, it should not be necessary to
simulate the RNA-synthesis actions of RNA-polymerase at the nucleotide level. A
more abstract representation of this process can be used (e.g., at the DNA Segment
level).

It should be obvious that humans solve problems in this way as illustrated by the
preceding example (that is, biologists can predict the outcome of this experiment
correctly without employing such a detailed simulation). As human performance in this
domain is reasonably high, there is reason to believe that this approach is not a bad

E. H. Shortliffe 154 Privileged Communication

Core Research and Development

idea. But what reason do we have to believe it is a good idea? Why not build a
simple simulator that executes at one constant level of detail and be done with it?

This simulator is really only a sub-system of the whole discovery system, and as such
could be cailed on many times during a given "discovery deliberation”. It is thus quite
possible that the speed of the simulator will affect the tractability of the discovery
problem.

In addition, learning itself is usually subject to large combinatorial explosions.
Consider learning to be a search through a space of concept descriptions, where
generalization and specialization are among the state transformation operators. The
more concept description primitives there are to combine, the less feasible this
computation becomes. If the simulator represents object structure and function at one
very detailed level, there will be a huge number of primitives to recombine. But if
objects are represented at different levels of abstraction, learning too may proceed using
"primitives” at higher levels, where presumably there are few primitives at the less
detailed levels.

In Biology and the other Natural Sciences, many discoveries consist of the addition of
detail to some model. Objects (e.g., ribosomes, atomic nuclei) which were once
considered to be primitive black boxes have their insides probed to reveal a complex
inner structure, or the range of their observed behaviors may increase. If our simulator
is designed to represent and execute theories at different levels of detail, adding detail
{o an actual theory could be as natural as adding a new cell to the front of a linked
ist.

Another issue is user interaction. Users will want to include high level vocabulary
terms in their specifications of experiments. And similarly, they will want to see these
terms used in predictions. (Note this constraint does not force the system to be able to
reason at varying levels of detail).

The issue of reasoning at different levels of detail is very relevant to current research
in expert systems regarding "Deep vs Shallow reasoning”. Some researchers argue that
the “shallow reasoning” or reasoning from “empirical associations” used by traditional
expert systems implemented in production rules (e.g.,, MYCIN) is qualitatively different
from "deep reasoning” or reasoning from "first principles” which human experts are
able to use when their “"shallow reasoning” fails, or when "deep"” explanations are
required. I claim that while it is certainly important to be able to reason in a more
detailed manner when a standard approach to solving a problem fails, and that it is
crucial to be able to provide deeper justification for a line of reasoning than simply
citing rules X and Y, that there is no absolute distinction between “"deep” and "shallow"
reasoning. What is possible is to distinguish one line of reasoning from a deeper line
which justifies it. The construction of this simulator should help to prove this point.

Production rules have not been designed for the task of reasoning at varying levels of
detail. It is important to design a language which explicitly provides this ability.

Knowledge Representation

The initial work done on the simulator has alerted us to unresolved issues in knowledge
representation related to inheritance hierarchies. The inheritance hierarchies of both
UNITS and KEE provide the ability to define properties of a given class unit which
are inherited by subclasses or members of that class. But in fact this notion of class
partitioning blurs together - and is used by knowledge engineers to represent - at least
four different concepts. These are the concepts of class, abstraction, prototype, and
object decomposition. Inheritance hierarchies also force one to make some choice about
what is a primitive object in a given domain. Yet the notion of an individual is a

Privileged Communication 155 E. H. Shortliffe

Core Research and Development

difficult concept to define - philosophers have devoted entire books to it. Al could
benefit from a systematic study of all five of these concepts, and this simulator
provides a challenging context in which to study them.

Another idea to explore is object behavior structuring. A given object may potentially
exhibit several different behaviors. For example, messenger-RNA binds to different
molecules, is translated into protein, and is slowly degraded within the cell. Consider
two different approaches to representing this behavior. In an object oriented approach,
all behavior specifications for a given object are viewed as part of that object. Thus, at

a atvan inctant in tima it ie ancy th Aatarmina avantly what hahavinre a oivan ahiant
a givén instant in Ume 1l 1S ¢asSy O awrmine &Xaculy wnat 0€navills a giveén OojCeCl

will demonstrate. Consider a process-oriented structuring of behavior. Using this
approach, a given behavior is structured within some larger process of which it is a
part. Thus, the binding of mRNA to a ribosome would be viewed as one element of
the complex process of translation, which would be considered quite distinct from the
process of mRNA degradation. This makes it difficult to reason about sets of
asynchronous processes operating in parallel, but provides an easier way of reasoning
about a long series of events which are causally connected.

It is not clear what the precise trade-offs between these two approaches are. It may
sometimes be necessary to employ both, which would probably require translation
between the two. This distinction has been explored by the Computer Systems
community, but these ideas should be transferred to the AI community and would
probably gain some clarity in the process. seem to be useful simulation tools.

Second, the other work in qualitative simulation simply has not addressed many of the
issues we propose above, such as reasoning at varying levels of detail and making more
sense out of inheritance hierarchies.

Summary

We propose the following:

« To design a process specification language which will form the heart of the
simulator for the trp system. This language will be fairly similar to
production rules, but will overcome the shortcomings of production rules as
discussed above.

o To implement an interpreter for this language which will allow both forward
simulation to predict the results of a specified experiment, and backward
simulation, to suggest experiments which would explain an observed result.

« To implement an actual simulator for the trp system.

« To explore possible means by which the simulator should decide at what
level of detail a simulation should be run to solve a given problem.

« To explore issues in knowledge representation concerning the concepts of an
abstraction, a prototype, a class, a composite object, and an individual.

E. H. Shortliffe 156 Privileged Communication

Core Research and Development

S. Additional Basic Research of the Knowledge Systems Laboratory

In addition to the core research described above, there is considerably more research in
the KSL that draws on the SUMEX resource and that inter-relates to the whole SUMEX
community. This is briefly summarized below in three main projects of the HPP,
LOGIC, and HELIX groups of the KSL. (See Appendix A on page 285 for a
description of the organization of the KSL.)

Research on Multiprocessor Architectures for Symbolic Computation

As the aspirations for applied AI work rise, expert systems are becoming more complex,
and the symbolic computations involved more compute-intensive. Medical and
biological applications share the widely feit need for more processing per dollar in the
future.

VLSI technology, of course, offers the prospect of inexpensive high speed computing,
but only if methods can be found to organize large collections of processors and
memories in systems for concurrent (parallel) processing. The Heuristic Programming
Project began work on this problem in the mid-1970's, with SUMEX computer support,
in a project called HYDROID, whose major result was a system for a network of
processors known as Contract Net [67]. HYDROID was reborn in 1983 as Advanced
Al Architectures (AAIA), and has received funding support from DARPA and
computing support partially from SUMEX.

In the AAIA project, the proposed architectures are studied in simulation (on Symbolics
workstations). The underlying architecture is a distributed processor and distributed
memory network, simulated with our CARE simulator. On top of CARE various
experiments in the development of Concurrent LISP are being done. Above the LISP
level are levels of knowledge access and problem-solving framework. At the knowledge
level, methods are being studied for rapid retrieval of objects and rules in a
multiprocessor net. At the problem solving level, we are studying the "parallelization” of
the Blackboard framework. The Blackboard framework was chosen because we felt that,
overall, it was the most powerful of the modern Al problem solving organizations and
offered significant opportunities for the exploitation of parallel processing.

The top level is the level at which applications are programmed, and the opportunities
for parallelism at this level are mostly domain- dependent. However we are studying in
detail applications of the particular class known as signal-understanding (or signal-to-
symbol transformations), hoping to discover a few generalizations applicable to the
class.

If the levels are "factored"” carefully and correctly, the speed-ups from parallel
processing,each level to the next, will multiply (!), yielding overall a major system-wide
speed-up from modest gains at each level (which is all that one can hope for at
present). The goal of the AAIA project is to refine the level-factoring and the speed-
ups at each level over the next 2-4 years to produce an overall gain from
multiprocessor "parallelism” of at least one hundred times that of conventional serial
machines (as measured by the simulator).

A Retrospective of the AGE Experiments

The scientific work of the KSL is largely experimental in nature. Ideas are embodied
in software systems and are tested in significant applications. The AGE project was one
of those lengthy experiments. From the beginning it was supported by SUMEX as core
research. It had multiple goals: a) to provide a readily useable software package for
developing expert systems employing the Blackboard framework b) to study the
Blackboard framework itself with a view toward simplifying and generalizing its various

Privileged Communication 157 E. H. Shortliffe

Core Research and Development

mechanisms and c) to study the problem of how to build a "knowledge engineering
workstation” environment (i.e. put KE expertise into the box).

AGE-1 exists, has been widely used, and is widely distributed. Many technical reports
and papers exist. At the KSL, the scientific tradition is to bring together, summarize,
and interpret the results of our multi-year thematic studies in a single scientific
monograph that represents the best scientific sense we can make of the many
experiments in the line of study. We did it with DENDRAL (Lindsay, Buchanan, et.al.),
later with MYCIN (Buchanan and Shortliffe). We will soon begin the effort to do the

" "
necessary and appropriate AGE retrospective study. It will be done as a "background

effort to other activities and will take about three years (elapsed time).

Research on Logic-Based Systems and Systems with Self-Awareness

One of the key limitations on the technology of logic programming is that the usual
logical rules of inference are too weak. While traditional logical implication is an
essential part of expert reasoning, by itself it is inadequate to explain the cognitive
performance of human experts or to serve as the sole basis for a practical logic
programming technology. Over the next five years we propose to study and implement
four specific advanced reasoning techniques, viz. uncertain reasoning for resolution,
theory formation based on measures of probability and simplicity, efficiency-enhancing
theory reformulation, and counterfactual implication.

The key idea underlying logic programming is that of programming by description. In
traditional software engineering, one builds a program by specifying the operations to
be performed in solving a problem, i.e., by saying HOW the problem is to be solved.
The assumptions on which the program is based are usually left implicit. In logic
programming, one constructs a program by describing its application area, i.e., by saying
WHAT is true. One makes one's assumptions explicit and leaves implicit the choice of
operations.

Uncertain Reasoning

The actual techniques used to implement uncertain reasoning facilities have increased in
sophistication since the introduction of “certainty factors” in MYCIN; the approach
which has received the most attention recently is the use of Dempster-Shafer theory
[64]. Here, ranges of probabilities are considered instead of specific values; this has
the advantage that it is possible to describe situations where one is uncertain as to the
accuracy of one's information by representing it using a wide interval of possible
probabilities.

Existing work at Stanford has laid a theoretical foundation for the incorporation of
Dempster-Shafer theory in a forward- or backward-chaining inference system. The
inclusion of probabilistic information in a resolution-based system is not yet well
understood, however, and coming to grips with this problem is one of the specific goals
of this project.

Theory Formation

Many problems in Al involve learning by hypothesizing, including diagnosis, planning,
natural language understanding, generation of tests or experiments, and the modelling of
a user, agent or environment. Programs use bias to select among possible inductive
hypotheses or theories.

Previous AI research has formulated bias in a procedural and often ad hoc manner.
We seek to represent the bias emp_loyed' in traditional AI approaches to theory
formation in a declarative manner, axiomatically and semantically, so as to incorporate

E. H. Shortliffe 158 Privileged Communication

Core Research and Development

it into the logic programming methodology. One promising approach we plan to
investigate is to represent inductive theories as the resuit of non-monotonic reasoning,
in particular circumscription [46]. We aim to apply the tools of non-monotonic
reasoning to the question of when and how to weaken an overly-strong bias, once a
contradiction has arisen.

We plan to investigate diagnosis, in particular diagnosis of faults in digital circuits, as
an application of these theoretical ideas about theory formation. We seek to enable the
use of declarative, prior knowledge beyond the design specification, e.g. the likelihood
of various faults, the observables and costs of tests; as well as to provide a more
principled and flexible basis for preferences among fault hypotheses, e.g. via non-
monotonic reasoning and reasoning about bias, than in previous Al approaches [14, 21]

Theory Reformulation

Understanding the role of representation in problem solving has long been recognized
as a central problem in AI research. The question of how to reformulate a problem
description to make its solution transparent is at the heart of this problem. The
canonical examples cited are from the world of puzzles -- the mutilated array problem
and the missionaries and cannibals problem. The latter was extensively analyzed by
Amarel, to identify shifts in problem representation that make the solution process
more efficient.

We have decided to concentrate on the largely unaddressed area. of problem
reformulations under a given problem solving method. Within it, we seek to study the
class of efficiency reformulations that can be applied to a problem specification. We
will carry out this investigation in the domain of digital circuits. Given a first order
logic description of a circuit at a given level of detail (which should be sufficient to
solve the problem at hand), we will find a suitable reformulation of structure and
behavior rules of a circuit to make a certain class of problem solving (e.g diagnosis,
simulation) easier (have better space/time efficiency). This domain is chosen mainly
because a preliminary analysis shows that it is amenable to the sorts of reformulations
we wish to consider. ’

Counterfactual Implication

A type of inference that we have just recently begun to consider is that appearing in
"commonsense” implication. Consider the statement,- "If it hadn't been raining
yesterday, we would have had a picnic.” Assuming that it was in fact raining, any
complete inference scheme (such as the resolution-based theorem prover in MRS) will
conclude that this statement is valid. We plan to continue the formal investigation of
counterfactuals already begun and will implement the results of the investigation in
MRS. In light of the fact that MRS has already been used to develop diagnostic aids in
the domain of digital hardware, this seems an ideal opportunity to test both the
applicability and effectiveness of this use of counterfactuals. We also hope that the
inclusion of a counterfactual inference mechanism in a general-purpose expert system
building tool will help illuminate the precise extent of the usefulness of counterfactuals
to Al generally.

SOAR: An Architecture for General Intelligence and Learning

SOAR is to be an architecture for a system capable of general intelligent behavior
-- of assimilating and working on novel tasks, using diverse knowledge, learning by
experience, and reflecting on its own behavior. Work to date with SOAR already
provides evidence for significant advances towards attaining such an architecture. We
plan to continue the development and investigation of SOAR -- to test and augment
the principles on which it is built, to expand its functionality, and to have it perform a

Privileged Communication 159 E. H. Shortliffe

Core Research and Development

wide range of demanding tasks. Our ultimate objective is to fashion an architecture

that is capable of supporting the full range of flexible activities required of intelligent
behavior.

SOAR embodies a collection of mechanisms and organizational principles that express a
set of distinctive hypotheses about the nature of the architecture for intelligence.

1. Uniform task representation by problem spaces. Every task of attaining a
goal is formulated as finding a desired state in a problem space (a space
with a set of operators that apply to a current state to yield a new state)
[52]. Hence, all tasks take the form of heuristic search.

2. Any aspect of a task as an object of goal-oriented attention. This includes
the system reflecting on its own problem-solving behavior, An exact
formulation of this property requires some care, because the architecture
itself is a fixed structure. The essential feature is that no domain-dependent
procedures lie outside the goal system -- for implementing operators,
selecting operators, analyzing situations, or anything else.

3. Uniform representation of procedural knowledge by a production system.
SOAR is realized in a specialized production system. All satisfied
productions are fired in parallel, without conflict resolution. Productions
can only add data elements to working memory; the architecture is
responsible for all modification and removal.

4. Knowledge to control search is ultimately expressed in a system of
preferences. Search-control knowledge is brought to bear by the additive
accumulation (via production firings) of data elements. The end-result is a
set of elements called preferences (about the various alternatives for
behaving in a problem space).

5. All goals arise to cope with difficulties in problem solving. Ultimately
difficulties arise from a tack of knowledge about what to do next. In the
immediate context of behaving, difficulties arise when problem solving
cannot continue. These difficulties are detectable by the architecture,
because the fixed preference decision procedure concludes successfully only
when the knowledge is adequate. It fails otherwise and the architecture itself
creates goals for overcoming the difficulties. This principle of operation,
called universal subgoaling, is the most novel feature of the SOAR
architecture, and many other features build upon it, e.g., automatic detection
of goal attainment and learning by chunking.

6. The basic problem-solving methods arise directly from knowledge of the
task. SOAR realizes the so-called weak methods, such as hill climbing,
means-ends analysis, alpha-beta search, etc, by adding search-control
productions that express, in isolation, knowledge about the task (i.e., about
the problem space and the desired states). The structure of SOAR is such
that there is no need for the organization of this knowledge in a separate
procedural representation. This is another novel feature of SOAR.

7. Continuous learning by experience through chunking. SOAR learns
continuously by, in effect, automatically caching all of its goal results as
productions. (This mechanism appears to be directly related to the
phenomenon called chunking in human cognition, whence its name.) It
learns both operators and search control, and it produces significant transfer
of learning to new situations both within the same task and between similar
tasks. This ability to combine learning and problem solving has produced
the most striking experimental results so far in SOAR.

E. H. Shortliffe 160 Privileged Communication

Core Research and Development

Our research will have a breadth-first flavor as we seek to add major intellectual
abilities to SOAR, to make SOAR robust, and to develop a theoretical foundation for
the SOAR design. Only the additions to SOAR are listed below for brevity.

Chunking as a general learning mechanism

We are currently investigating two areas where chunking may be found wanting:
recovering from overgeneral learning and learning from examples. The first area
involves being able to learn new chunks that override previously learned chunks that
were overgeneral (that is, chunks that applied inappropriately). Since SOAR only learns
from experience, we are investigating ways for SOAR to retry an errorful problem-
solving episode more carefully. During the retry, it may be able to override an
incorrect chunk and learn new chunks that will correct that chunk in the future.

The second area involves extending chunking. While chunking is based on learning
during problem solving, the inductions necessary to learn from a set of examples appear
at first glance to require a quite different learning mechanism. This research effort
attempts to unify learning from examples with learning while problem solving. This
extension is only one of several that could be probed to test whether chunking really is
a general mechanism. (Actually, the right way to pose this issue appears to be what
other aspects of problem solving must be coupled with chunking to accomplish each
type of learning -- where chunking operates as the final memory-modification
mechanism.)

Planning

Abstraction planning appears to be a natural uniform activity in problem solving [53]
and it appears to translate into a natural uniform activity in SOAR. We will
concentrate our initial efforts on this type of planning, because it seems more likely to
prove useful with all tasks. Initially, for tactical reasons, we will work with tasks that
are already operational in SOAR, such as the RI configuration task. Abstraction
planning, especially with the constraint of universal applicability, should provide a
major challenge to SOAR, since it poses quite novel design considerations, not present
initially or in the extension to chunking. If SOAR adapts gracefully to planning, we
will have another major item of evidence for SOAR. Contrariwise, if major difficulties
arise, we should be able to discover some important limitations to the principles on
which SOAR is built.

Problem-space creation

The creation of appropriate problem spaces is a critical aspect of SOAR's performance.
For SOAR, creating new and better problem spaces takes the place of creating new and
better representations. So far, SOAR does not do this. The problem spaces that are
used are all instances of a few general problem spaces (for resolving ties among a set
of objects or for evaluating an object or operator by looking ahead in the original
space) or of user-created spaces (as in the gross means-ends structure of RI-Soar,
Dypar-Soar, etc.). Indeed, it came as a surprise that we were able to avoid problem-
space creation as a major roadblock early in the development of Soarl and Soar2. But
any substantial degree of generality for SOAR requires a powerful capability for
creating problem spaces.

Privileged Communication 161 E. H. Shortliffe

Core Research and Development

2.2.1.3. Resource Hardware and Core System Development

Introduction and Background

We have already explained the systematic evolution of SUMEX-AIM from its original
conception as the central node for a national community of biomedical AI scientists to
a more and more distributed community and computing environment. We now want to
sketch our plans for the hardware and system development of the resource for the
proposed new grant period.

In summary, our development efforts will build on our past experience with Lisp
workstations, attempting to make a more effective and intelligent computing
environment for AI research and the dissemination of AI systems out to biomedical
user environments. Just as our core research and Al applications efforts are aiming for
systems that will have their impact 3-5 years from now, our computing systems work
aims at the hardware foundations and system facilities of the same period. Certainly
the current trend toward cheaper and more powerful workstations will continue. So as
these machines become more ubiquitous, we must develop the system software that will
give users the tools to take advantage of these machines in all their power and
flexibility. This includes the full range of tools such as text processing, electronic mail,
file manipulation, budget preparation and control, drawing and so on that keep
workstation users tethered to expensive and overloaded mainframe systems. But it also
includes extensions so that users can interact more effectively with their computing
environment through more intelligent customized interface agents and can take
advantage of the networked concurrent architecture these workstations represent. We
plan no changes to our mainframe hardware facilities, but will continue to operate
them for the on-going work of our community as possible with decreased DRR support.

As we will be discussing more fully, the growing collection of hosts and workstations
has forced Al, distributed system, and networking researchers to reexamine the question
of how to use many processors on a high bandwidth local area network (LAN) most
effectively. Viewed as one large interconnected system, the amount of Al research that
can be done is many times more that what was possible just five years ago, but we are
encountering limitations because the traditional organization of such distributed
processing power in fact wastes much of this power. At present the bottleneck in the
development of network-based systems has become the software, with much of the
potential of the powerful workstation hardware being unrealized. The first key is to
find the appropriate role for the workstations within the context of the whole network-
based system [58].

Workstations and Networking

From the outset, as our research computing began moving off of mainframe computers
and onto a variety of personal Lisp machines, it was clear that these systems were an
integral part of a larger network environment for the development, maintenance, and
distribution of software and for access to services that are only cost effective as
community resources. Systems software is continually being developed by both our own
staff and the Lisp machine vendors. A network system facilitates the sharing and
distribution of these software efforts and servers such as large disk files, file backup
systems, high quality printing, remote network gateways, and shared mainframe hosts are
best shared through network interconnections.

It is not possible or desirable to run all applications on the workstation [58]. For
example, large database applications require huge amounts of disk storage and some
graphics or signal processing applications are processor intensive and need special
hardware. Printer services require knowledge of a diverse set of fonts and special text

E. H. Shortliffe 162 Privileged Communication

Core Research and Development

processing languages like Impress or Postscript, and processing mail needs address
resolution and domain name servers. Still further restrictions are that particular
workstations are tuned to run a particular flavor of Lisp and its extensive system
support environment. Consequently, workstations have been tailored for a particular
processing need, and to then look for the auxiliary software and hardware requirements
elsewhere. Since our research staff and users do not all reside in the same building and
since Lisp machine hardware and network servers are organized around computer rooms
with cable length restrictions, we cannot currently give people the needed flexibility in
g_e%graphic access to use a Lisp machine from anywhere on campus or from home
either.

So, when a distributed system is viewed as a collection of heterogeneous hosts
comprising one interconnected system, the system as a whole has a maximum work load
potential which is a function of the resources of each of the hosts in the system, and
the ability of these hosts to communicate with one another via the LAN. Currently,
access to such systems and effective use of their resources fall far short of the potential
for at least the following reasons:

o Lisp Machine Cost: While costs continue to fall, the highest performance
Lisp machines are still rather expensive, ranging from around $30,000 to
$120,000 and this is out of the reach of many researchers. Entry into the
system is through a personal workstation and we are not able to afford
giving each researcher dedicated access to the best systems. In effect without
flexible access facilities, the limited number of personal computers provides
for rigid control on the number of users. Unlike time-sharing systems
where response degrades with each added user but where there is no rigid
limit to the number of users, in a distributed environment without access to
a personal Lisp machine, you cannot use anmy computing resources [58].
There is currently no adequate means of sharing these workstations and
consequently keeping the cost per user at a minimum, and the usage per
machine at a maximum.

o Operating System Differences: In order to use a remote host to run a
program a TELNET connection must be established with that host. The
user then logs in and runs the desired programs. This implies that a user
must understand the details of the executive commands and file systems of
several operating systems if he wishes to take advantage of all hosts on a
network to aid his research.

o Network Protocols: Communication between hosts on the network is by the
network protocols that each vendor supplies. In our unavoidably
heterogeneous computing environment, most mainframes do supply servers
for some protocols but not all mainframes supply servers for all protocols.
Also, some protocols may run very efficiently on a server and others may
not. This is certainly the case with respect to IP/TCP versus PUP/BSP
under UNIX. IP/TCP is part of the UNIX kernel and PUP/BSP runs in
user space making the latter much less efficient. This inefficiency is
particularly noticeable as the number of connections increases on our file
Servers.

o Resource Constraints: A user cannot easily get a picture of what the load
distribution is on the combined system resources. One server or mainframe
may be idle and others busy. In fact, users simply view this system as they
did a time-shared mainframe. In each circumstance the researcher has
important work to do, and correctly sees the underlying system as a resource
to get that work done in a timely way, and often under the pressure of a
deadline. Thus, they push a particular environment for all that it is worth

Privileged Communication 163 E. H. Shortliffe

Core Research and Development

and the limitations of these environments are exposed and often pushed to
unworkable extremes. Underlying a mainframe system is an operating
system and scheduler that can manage and allocate its resources as a
function of the number of wusers. In our current system access and
allocation is at best ad hoc, and for the most part managed by each user. If
our timesharing experience yields any axioms, then one of would be: In any
computing environment users will attempt to reach or exceed the maximum
work load potential of that system. Consequently, the resources of the
system must be well managed by an agent that can visualize and
appropriately and effectively allocate them.

o Remote Connection Costs: The primary means of accessing a remote host is
to establish a TELNET connection and then run jobs as if you had a direct
terminal line connection to that host. Maintaining a smooth typing response
over a network is very expensive and the actual processing return for the
work done on both the workstation and the remote host itself per keystroke
is quite small. The cost of processing one character per packet is not that
much more than the cost of 512 characters per packet. The overhead is with
respect to the frequency with which the packets themselves must be
processed in order to give the appearance of smooth typing. Efficient
management of resources should be done in such a way that typing, mouse
or voice interaction, view management and screen refresh are processed on
the local workstation, and that communication wi