Test for distinctness of genotypes in an apparent prototroph strain which occasionally segregates out mutants by an ultra-violet killing test. If the prototroph is an extra-cellular association,

\[\begin{align*}
 & A^+ \cdot B^+ \\
 & A^- \cdot B^-
\end{align*} \]

then an irradiation killing 99% of the cells would leave, for the most part, survivors which were mutants since, e.g., in only 1% of the cases would both members of a pair succumb.

If the association were heterocaryotic, i.e., the various genes were in the field of action of a single lethal hit, there should be no increase in the proportion of mutants. The above figures must be modified. Since killing here would be on an is-hit basis (all members of the associationquiring to be killed. This will leave even smaller % not mutants)
Does the \(e^- \) kill off the \(e^+ \) nuclei or make them \(e^- \)?

\(e^+ \) nuclei - also \(y^+ \) does \(y^- \) lose?

\[\text{and } l^- y^- \text{, } l^+ y^+ \]

...and \(l^- y^- x^+ \text{, } l^+ y^+ x^- \text{, } x \text{ bros. } A \text{.} \]

Put A.

33757-4540 +

37401

Is the wild-type allele of 4540 lost? ??

See.