Spreadout mustard-treated Y40 (see 426) on EMB-lactose +ca 4 per maltose, sucrose, glycerol plates and examine for mutants! Ca 400 per plate.

- lactose: 36. # of plates
- Immerse hood
- ca 15,000 colonies examinabl
- no fermentation mutants.

- mm x mm
- 2 plates + 2 sterile plates
- ca 1020 examined.

2 very small H-colonies noted. Streak on + fresh medium.
all M+.
Glycerol - slow utilization - compare passage on glycerol
Optizn.
Sucrose - very slow but definite utilization.
Fermentation contents - enrichment cultures.

<table>
<thead>
<tr>
<th>Sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose</td>
</tr>
<tr>
<td>fructose</td>
</tr>
<tr>
<td>lactose</td>
</tr>
<tr>
<td>sucrose</td>
</tr>
</tbody>
</table>

Symbols:
+ = high acidity, ++ = medium acidity, +++ = mild acidity,
- = none, m = acid, mm = weakly acid, mmm = slight acidity.

Streak out some apparently EMB - colonies from Y 34.

Contains with a typical EMB. - (b).

a) - Y 80.

b) +

Compare a, b + gly + enrichment culture above.

Y 80

EMB

No evidence of papillae.

Y 53 gly ± +

Y 53 gly + + +++ different from Y 53?

On BCP - medium, is not changed in color, cells show slightly different shades (+, ± = pinkish), + = translucent or white.

On DLE - BCP broth - DLE - for gly+ and gly+ all show slow acid + gas. (see our)
1. Enzymement for gly+

A5 - streak from gly tubes to new gly EMB

A8 - scoring OK, as before!
Resistance mutants - resistant.

Sticks out sup. of

N.5. str. B.5.

Y77 ++* -- -- !

Y78 -- ++

* dye in decolorized.

After 3 days, several hundred colonies appeared on the streaks. Y79.

Sticks Y77 over Y78/H5. to determine if decolorization is due to

effect of dye. No evidence of streaking of previously decolorized

(47') culture. Probably due to pH change.
Inversion Tests: Summary

Exp.	**Method. Tests:**	**Cumul. Yield Tests:**
426 | \(HN_2 \) & \(Y40 \times Y53T \); \(Y53 \times Y40T \), by seed, 0+6 | 20 tests, 17, 37, 0
433 | \(HN_2 \) & \(XN \) & \(Y53T \); by shoot, 0+6; 0+6 | 20 tests, 17, 37, 0
437 | \(Y40T \times Y53T \); ni only, x ray; 2 x 4/2 = 84 | 121, 0
508 | \(Y40T \times Y53T \); ni only, x ray; 2 x 14 = 28 | 149, 0

Trend of prototrophy mutation.

Pour 440x155 plates in T10. To exp. add also 10^{-6} N-12 cultured and washed similarly in order to compare rates of colony development.

See 445.
Plate 165 x 440

168 x 168.

m T(60) + T(81).

no prototrophi available.

not due to suppression of X in B, B'1, B'2 regions.
March 9, 1947

Y80 x Y81. cf. 435.

M1 → B1+ rescued. Pick up plate on EMIBlac + EMB glycerol.

Bacteriophage

\[\text{Bae}^{-} \text{Bae}^{-} \text{lac}^{-} \text{lac}^{-} \text{Lac}^{+} \text{Lac}^{+} \text{Ble}^{-} \text{Ble}^{-} \text{Ble}^{+} \text{Ble}^{+} \]
Note: B₁⁺: 25/25 by ++
B₁⁺ + B₁⁻: 44/46 by ++

<table>
<thead>
<tr>
<th>A.</th>
<th>B诱人</th>
<th>C诱</th>
<th>D诱</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>R</td>
</tr>
</tbody>
</table>

T(0)	+	-	R
T(B₁)	-	+	R
?	-	-	R
?	-	-	R
?	-	-	R
?	-	-	R

[scoring maybe]
[inaugurated]

When read again 4 hours later, series B had gotten considerably darker!

Tenebrio with the map!
March 6, 1947

Lac-V r
Lac-V s
Lac+ V r
Lac+ V s

Bₜ⁺: 15 9 0 1 25
all Bₜ⁺

Bₜ⁻: 20 19 5 0
Bₜ⁻: 1 (??)

This scoring of Bₜ⁻ line at 2da. resulted in some variation in intensity.

Note: 24 Lac⁻: 1 Lac⁺ + w. Bₜ⁺ (95%)!
46 Lac⁻: 5 Lac⁺ + w. Bₜ⁻.

1) Bₜ⁻|Bₜ⁺ 41 25 24 2 1 25 40 4 40 64 6 70
c x² = \frac{2}{0.04} \approx 0.2
\frac{1}{0.04}
\frac{1}{0.03}
\frac{1}{1.3}

improved standard:
18 24 7 1 25
51- 6 11 + 6 70
\chi^2 = \frac{12^2}{51} + \frac{12^2}{19} = 3.3
8.9
13.2

a) All data: 72% Lac⁻
\chi^2 = \frac{36}{18} + \frac{36}{7} = 7
d.f. = 1 00 8.

b) unselected 64% Lac⁻

peculiar segregation may explain peculiarities of Bₜ⁻ segregation.
if the sequence is defined
Segregation of drug resistances

A: Y77 x Y78

B: Y53 x Y78

C: Y40 x Y77

Streptomycin 5 μg/ml
Neomycin 100 μg/ml

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>V</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Str</td>
<td>R?</td>
<td>R?</td>
</tr>
<tr>
<td>H.G.</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

? probably S

Scoring uncertain
due to selection of resistant residue

H.G. resistance
10-4
lac+HR lac+Ms lac+HR lac+Ms

C. Total

<table>
<thead>
<tr>
<th>Lac+ S</th>
<th>2</th>
<th>1</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac- R</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

Scoring not certain

Lac+ S x Lac- R

Lac+ S x Lac- R

Indicate of resistant by solid, indicated linkage to B34.

should score on minimal plates to avoid selection for resistant contaminants.
Selection of recombinants with drugs

1. Mix YB cultures of Y77 (Hg²⁺) and Y78 (Str⁻²).

- 30° also use mixture of mut. plating technique of Y441.

 1. Plate culture in Hg + Str A 6 A 8.

 2. Y77 coloos, dieo. 3; 4/col.

 3. Y78 coloos. ca 100 minute clump. 1/col.

 4. Y77 + Y78. ca 10 with small A - as 3.

 A 6 - incubate at 36°.

 Indeterminate whether the multi. resistant colonies represent recombinants.

 Compare 4 (coloos) to 2 mutants of Sm Hg R to Sm Hg²⁺.

 Thus may be some synergism in view of the large log before colonies are detectable.

 7. See Y84 X Y79. plate in brilliant green. 7 + streptothricin.
March 4, 1947.

Red. 127,000 u. streptomycin from Woolley, Mach. non-strept ampicillin.
Suspend in 2.7 ml 95% alcohol for 3 hours. Add
10.3 ml sterile H2O to ca. 10,000 u/ml in 20% alcohol. Dilute further as required.

\[
\begin{array}{ccc}
100 & 1 & T \\
Y78 & Y53 & T \\
\end{array}
\]

\[
\begin{array}{ccc}
50 & T & 500 \\
Y78 & Y53 & 1,200 \\
\end{array}
\]

Steve Y78 on 5% agar to 10-
Y82 - streakout on 5% agar-

\[
\begin{array}{ccc}
100 & 10 & 100 \\
Y78 & Y53 & 100 \\
\end{array}
\]

Steve Y78 on 10% agar-
Y84 -

Y78

Streptomycin
in 5% agar gives colonies but not so large
as Y82.

Y83, Y84 ok on 10% agar.
Segregation of B+, etc.

440 x 453. Mix cells in agar pour on malt plate.

A) 11
 15
 10
 15
 60
 m = 12.0
 m = 11.1

B) 20 B total: 18 B+
 2 B- (Lac- Ri; Lac+ R)

C. Segregation of Lac, Ub in 0, B:\n
 0: -R -S +R +S 10 10 9 0
 24 0 4

 Bi: 16 12 13 0

Among O plate, streak out 11-12 on surface. These colonies appeared at same time as prototrophs (24 hours) and were of comparable size.
March 6, 1947.

Lac⁻ V regurgitation:

<table>
<thead>
<tr>
<th>Plate #</th>
<th>lac⁻ R</th>
<th>lac⁺ R</th>
<th>lac⁻ S</th>
<th>lac⁺ S</th>
<th>2 X V scoring unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6 lac⁻ = 135/214</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4 comp. at 70% peps.</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4 X = 190/214</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5 comp. at 85% peps.</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

113 77 22 2 1/214.

The agreement of the Hart R lac⁻ S classes with the former results is very poor. Reexamine crosses of aberrant cultures.
There is a shift from lac → S to lac → R.

An action basis:

\[
\begin{array}{ccc}
& + & R \\
\text{a} & \text{r} & + \\
\text{b} & \text{s} & - \\
\text{c} & \text{TL} & - \\
\end{array}
\]

\[
\begin{align*}
\langle \text{lac} & < \text{brc} < \rangle < \text{a} \\
\langle \text{v}^\text{R} & < \rangle < \text{c} \\
\end{align*}
\]

\[
\langle \text{c} \ldots \text{c} \ldots \rangle
\]

\[
\begin{align*}
a = & + R \\
b = & - R \\
c = & - S \\
\end{align*}
\]

- It would not be augmented by the elimination of c.

or, another interpretation, is that:

The previous states were needed for Tor for L, c always decrease in the interval \(V - (\text{Tor} L) \).

- Compare types to what really intended

(i.e., low or high-S) biochemically.
446A

Table: 446.

<table>
<thead>
<tr>
<th></th>
<th>lac-R</th>
<th>lac+R</th>
<th>lac-S</th>
<th>lac+S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

\[
8^2 - 76.52^23.2\bar{2}\bar{1}1/151.
\]

\[
189.129.44.3/365.
\]

\[
\chi^2 = \left(\frac{49}{92} + \frac{49}{106} + \frac{1}{76} + \frac{1}{70} + \frac{4}{27}\right)^2 = 1.86 \quad p = .4.
\]

These samples agree.

Homogeneity??

\[
.59 / 1.86
\]

.46

.02

.01

.45

.33
analysis of 426 vs. 359 summarized.

\[-R + R -S + S \equiv \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>129</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>55</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>289</td>
<td>184</td>
<td>89</td>
<td>7</td>
</tr>
</tbody>
</table>

\[\chi^2 = \frac{25}{105} + \frac{25}{184} + \frac{144}{67} + \frac{144}{117} + \frac{196}{36} + \frac{126}{63} + \frac{1}{4} + \frac{1}{3} \ldots \]

\[= .2 \]

\[= .1 \]

\[= 2.2 \]

\[= 1.2 \]

\[5.4 \]

\[3.1 \]

\[6.2 \]

\[3.3 \]

\[12.7 = \chi^2 \]

\[8.5 \]

\[8.2 = \chi^2 \]

\[p = .04 \]

\[\text{it is the difference in the frequency of} \]

\[\text{which differentiates the distributions.} \]

\[\chi^2_1 = \frac{25}{189} + \frac{25}{129} + \frac{25}{55} + \frac{25}{60} \]

\[= \text{cay.} \]
March 7, 1947

Recover $446 - 22, 2-5 + 27$. In order to ascertain whether of disproportionate in ratios. Compare segregation of $lee + v = y40, y53$ stands.

A 22: 8:10:0:0
B 27:7: 9:6:0:0
C 25:7:7: 5:14:2:0
D $y40, y53$

\[
\begin{array}{cccc}
\text{A} & -R & +R & -S & +S \\
47 & 19 & 9 & 1 \\
44 & 20 & 7 & 1 \\
\text{B} & 26 & 12 & 16 & 0 \\
& 21 & 16 & 0 & 0 \\
\text{C} & 7 & 5 & 2 & 1 \\
& 7 & 5 & 2 & 1 \\
\text{D} & 30 & 20 & 19 & 0 \\
& 30 & 20 & 19 & 0 \\
\text{Total} & 52 & 38 & 39 & 6 \\
\end{array}
\]

This is homogeneous with

\[
\begin{array}{cccc}
\text{A} & \text{D} & 47 & 19 \times 9 + 1 \\
52 & 38 & 39 & \text{6} \\
99 & 57 & 49 & \text{205} \\
\end{array}
\]

Compare $A \neq D$.

\[
\begin{array}{cccc}
\text{A} & \text{D} & 47 & 19 \times 9 + 1 \\
52 & 38 & 39 & \text{6} \\
99 & 57 & 49 & \text{205} \\
\end{array}
\]

\[
\frac{7^2}{100} + \frac{100}{57} + \frac{9}{21} + \frac{4}{36} = 4.3
\]

\[
\frac{9^2}{18} + \frac{7^2}{21} = 5.6
\]

\[
\chi^2 = 10.1
\]

\[
p = .007
\]
\[\chi^2 = 64\left(\frac{1}{58} + \frac{1}{90} + \frac{1}{18} + \frac{1}{31}\right) \]
\[= 64\left(0.017 \cdot 0.010 \cdot 0.055 \cdot 0.031\right) \]
\[= 64 \cdot 0.0005 \]
\[= 0.073 \quad \rho = 0.007. \]

Therefore the total discrepancy is due to a difference in the proportion of V r cultures. In practice, this means a deficiency of V r cultures in the new group.
\[-R + R - S + S. \]

A. 22 24 20 7 1 1
B. 25 13 16 0
C. 27 7 5 2 1

\[76 38 25 2 \]

D. - 30 22 19 0
O2 10 7 1 5 0
N2 6 5 6 1
SH 4 4 5 1

\[\Sigma. 52 39 37 2 4\text{.7} \]

\[69 38 31 2 \]

Plate "A" plate

A
6 2 0 0
8 1 3 0
17 1 4 1
C
7 5 2 1

\[\text{Cautie! Beautiful screwing \(V^3 \).} \]

\[\text{compare +, -} \]

<table>
<thead>
<tr>
<th>89</th>
<th>41</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>40</td>
<td>140</td>
</tr>
</tbody>
</table>

\[189 81 270 \]
March 7, 1947

Using cells from Exp. 447, plate the Y55 components at a 10^-2 dilution into LB1 agar.

<table>
<thead>
<tr>
<th>No.</th>
<th>Titred</th>
<th>10 E.C.</th>
<th>25</th>
<th>10</th>
<th>1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>10 E.C.</td>
<td></td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There were stable differences in colonies, not apparently due to scoring difficulties.
March 7, 1947

Rin:

NaHCO3; ascorbic acid; pyruvate-lactate; O2; Methylene Blue. Detoxified 2?

D1 ? - Try on B14 x TP.

T(0) - V40 x Y5/3 mix in agar & process pre- launder plates.

1. Controls

2. "O2 atmosphere" lead + lid plates

3. N2 atmosphere turbid plates; colonies very small, spread evenly on surface

4. NaHCO3 2mg -

5. Ascorbic acid 1% no colonies (pH 4.5) No turbidity

6. Methylene Blue 100F Feul. 0.5 classes 0 or

The number of apparent colonies is correlated inversely to the growth turbidity, and was best in O2, next in N2. Both had no apparent effect; however, both in N2, no marked increase of colonies in the O2 atmosphere plates, but there which disappear are larger.
see Y41. Test Y18. mEMB+lactate. § Y53.

\[\text{bac} \] 41A → lac + bact. - α + \text{glycerol}. \\
\text{Y78} (58-16) SmR. +gly. +gly. + glycerol! \\
58-161 - (± ??) \\
Y80 (58-161, V_i^R, X_l^-) -

Note. Y80 on v. long incubation forms a faint violet color, à la sucrose
from penicillin septa it noted.

\[\text{Y53} \quad + + \] \[Y80 \quad 58-161 \quad + \] \[Y81 \quad + + \] \[Y40 \quad + + \] \[Y78 \quad + + \] relative

58-161 is slow, but wilksore vs. Y80. see Y53.
March 9, 1947.

Repeat 440

T(0) 16/16 red- 12/14 lac- 86%
T(18) 13/13 red+ 58/72 lac- 78%

Note, this denotes absolute linkage of red and lac.

written 480 x 480
not 481 x 440

seem to be desirable!

Note (also) the segregation for lac may be distorted.

Data for 480 x 453: (71% lac-)
\[\frac{440}{2} \]
\[\frac{\text{mrd} + 440}{2} = 71\% \]
\[440 = 71\% \]
\[480 = \frac{71\%}{2} \]
\[\frac{480}{2} = \frac{3}{2} \]

\[\frac{480}{2} = \frac{3}{2} \]

\[\frac{480}{2} = \frac{3}{2} \]
March 9, 1947.

Physical migration.

The above plants were allowed to stand 3 days before testing.

\[B. \quad V_80 \times 453. \quad \text{Test } B_1^+ + (B_2^- + B_3^+) \text{ on } \text{ Slg}; \text{ Lac.} \]

a. \[B_1^+ \quad 27 \text{ Lac}^- : 4 \text{ Lac}^+ \]
 \[35/35 \text{ Slg}^+ \]

b. \[B_1^- \quad 50 \text{ Lac}^+ : 16 \text{ Lac}^- \]
 \[\text{score uncorrected: } 1+ + 30 +/ 3 \]
 \[77 \text{ Lac}^- : 25 \text{ Lac}^+ \quad \text{ca} \quad 75\% \quad \text{Lac}^- \]

C. \[\text{Y} \quad 81 \times 440. \]

\[B_1^+ \quad 104 \text{ Lac}^- : 43 \text{ Lac}^+ \]

\[B_1^- \quad 28 : 13 \]

\[132 : 56 \quad 188 \quad 70\% \quad \text{Lac}^- \]

This experiment is not homogeneous with the earlier \(40 \times 453. \text{ LCO.} \)

D. \[\text{Y} \quad 53 \times 450. \]

\[B_1^+ \quad 33^2 \quad 28^2 \quad 25^2 \quad 14 \quad 18 \quad 18 \quad 0 \]

\[3 \text{ stand } X^2 = \frac{3 \times X^2}{75} \]

\[\chi^2 = 3.5 \quad \rho = 2.2 \]

\[41 \]

\[51 \quad 40 \quad 27 \]

\[11^2 \quad \text{of standard} \quad \rho = 0.06 \]

\[76 \% \quad \text{Lac}^- \]
March 9, 1947.

Y 40 x Y 53 in broth medium. Rick colonies & H, O, +
moi; impaired in T(8) + T(4).

50 isolates. At 12 hours, 5 had 8-

lac. V +

1 + R
2 + R
3 - R
4 - R
5 - R.

See 445

To summarize:

\[R - S + R + S. \]

\[R + R - S + S. \]

\[H + H + O + I. \]

\[o - s/12. \]

\[\frac{V^2}{2} = \frac{4}{3} + \frac{9}{3} = 4.3 \]

\[p = .14 \]

\[T^2 = 5 + \frac{16}{9} = 7 + .03 \]

\[6 \quad 5 \quad 0 \quad 1 \quad 12 \]

A \(\frac{1}{-} \) 6 3 3 .36

B \(\frac{H-B}{-} \) 1.4 9 .86 1.4

\[\text{average} \]

6.9 13.4
March 11, 1947.

Prove in a single glycerol plate (EMB-2%) the following:

<table>
<thead>
<tr>
<th></th>
<th>A12</th>
<th>B12</th>
<th>A13</th>
<th>B13</th>
<th>A14</th>
<th>B14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K-12</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>2</td>
<td>58-161</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>v40</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>4</td>
<td>v10</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>5</td>
<td>v53</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>v46</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>v04</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>8</td>
<td>178</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>9</td>
<td>177</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>10</td>
<td>v80</td>
<td>-</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>11</td>
<td>v81</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>172</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>13</td>
<td>173</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>174</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>182</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>183</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>17</td>
<td>184</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>179</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

16. v80: - + T T T: Translucent, creamy shade, not opaque pearl.
4/11/47

As various plates, streak: Senatina mucrosaccos.

Bacillus subtilis

Phytophthera infest颷ensis

Staphylococcus

\[\frac{+}{-} \]

Von u/s of:

Malachite

Green

H.G. 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++

10 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++ 1 ++

50 \[- - - - - - - - - - - - - \]

100 \[- - - - - - - - - - - - - \]

B. G.

T.C.

100

Streptothcm. 5th 1 \[++ \]

5 \[++ \]

Streptomycin 5th 1 \[++ \]

Penicillin

V. 100 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +

Susceptible: N.A. ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +

Dos 10 P.I. 1/4

Reading: 1st 1/20 4/12

6 P.I.

9 P.I.

Table: [values and results]
order of activity:

<table>
<thead>
<tr>
<th>M.G.</th>
<th>Sm</th>
<th>5th</th>
<th>Peer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staph.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.t.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.m.</td>
<td>S20</td>
<td>S21</td>
<td></td>
</tr>
<tr>
<td>S.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.21</td>
<td>Phyto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use strains of following pepsilaces highly drug care for higher steps:

S20 / M6 50 or B.G. 100
S.m / 5th 10
S20 / 5th 5
S21 / 5th 5 on higher 5th.
Staph / 5th 5

S20
S21 / Sm on higher Sm.
Staph
Resistance mutants

Staph. M.G. 1 turbid. ca 10 mg/l 100% inhibition of residue perfectly clear.

Svn 1 turbid. ca 10^4 Svn R.

Pneumococcus 100. turbid. ca 10^4 Svn R.

Svn 1 turbid. ca 10^4 Svn R.

Sfta 1 turbid. ca 10^4 Svn R.

Prof. turbid.

S20 Bg 100 clear, no Bg R.

Svm 5 turbid.

Prof. turbid.

S21 Bg 100 clear, no Bg R.

Svm 5 turbid.

Prof. turbid.

Phpto. M.G. 10 inhibition incomplete.

Sfta 50 inhibition, incomplete; some inhibition clear in percent.

Svm 50 incomplete inhibition clear. ca 100.0.

Prof. clear! -- ca 300 revertants.
Available:

Phyto

Sth 100
Sm 50
1kg 100

Sth 5
Sth 10
2kg 5

820
B.C.
Sth 10
Sm 5

S21
B.
Sth 10
Sm 1

Secretary
Sth 20
50
rearrangement
100

Sm 5
1kg 50
4/11/47.

As above in N.A. and T(0).

Protozoa showed as papillae in T(0) stage, justifying this technique. Throw out N.A. plates.

T(0) colony indicated zone

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>++</td>
</tr>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>++</td>
</tr>
<tr>
<td>4</td>
<td>++</td>
</tr>
<tr>
<td>5</td>
<td>++</td>
</tr>
<tr>
<td>6</td>
<td>++</td>
</tr>
<tr>
<td>7</td>
<td>++</td>
</tr>
</tbody>
</table>

Studied further for colony of Y407 + Y537.

29. Too singular. N.A mix + plate is unreliably.
"Synthrophic colonies?"

See 752 for sources.

Colonies from 448 x 453 on B10 were picked to water + T(0), T(3)
minus. They grew as 5/50 which grew on T(0) only after
2-3 days. The T(0) and T(3) tubes were both streaked on
lac-V (agar).

\[
\begin{array}{cccc}
1 & T(0) & T(3) \\
2 & -S; +R & -S; +R \\
3 & -S; +R & -S; +R \\
4 & -S; +R & -S; +R \\
5 & +R & +R.
\end{array}
\]

Since -S and +R are the
parental configurations, the delayed
growth [and the original colony
formation] might be due to synthrophism.

Since -S and +R are the
parental configurations, the delayed
growth [and the original colony
formation] might be due to synthrophism.

Streak out T(0) tubes on EMB lac to purify.

Test - (a) and + (b) colony of each on B, O mediums.

<table>
<thead>
<tr>
<th>1a</th>
<th>1b</th>
<th>2a</th>
<th>2b</th>
<th>3a</th>
<th>3b</th>
<th>4a</th>
<th>4b</th>
<th>5a</th>
<th>5b</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Expt. 1. Synthrophic colony

2. Colony not picked; only intracellular
growth in agar. Requires repeating.
Stirred Y53 across T1 on EMB agar.
Suspended shiny growth from "intersections of bacteria + phage
mix" off streak out.

Note, at intersections of bacteria + phage, a zone of coloration of
the bacteria or if there were there same enzymatic activity.

mucoid colonies: Y53M.

N21. Pick from mid region + from mucoid colonies to water
and streak onto EMB b/c. (Y53/1).

Y53/1 same growth (probably resistant, lac- + lac+).

1. Y53M - all mucoid. Pick one colony + heat on T1
 also streak out →

3. Y53M3 - all mucoid. Pick to slant and work for subsequent
 analysis. Yes
Plate Y40 x Y53 consists of 14 \(\times \) 18 colonies with five largest (>) and smallest (<) colonies from each of 7 plates + compare the distribution:

\[-R -S +R +S.\]

\[
\begin{array}{cccc}
4 & 1 & 0 & 0 \\
3 & 0 & 2 & 0 \\
2 & 2 & 1 & 0 \\
1 & 0 & 0 & 2 \\
1 & 0 & 0 & 1 \\
\end{array}
\]

For large, +R > -R.

For small, +R > -R.

\[
\begin{array}{cccc}
18 & 4 & 13 & 0 \\
\end{array}
\]

\[
\chi^2 = 5.14 \quad p = .16.
\]

But, compare all 3 groups,

\[
\chi^2 = 12.61
\]

Random selection from these plates gave:

\[
\begin{array}{cccc}
27 & 12 & 30 & 1 \\
\end{array}
\]

\[
\chi^2 = 12.61
\]

\[
p = .013
\]

Selection may play a role.

\[
\begin{array}{cccc}
221 & 136 & 142 & 6 \\
\end{array}
\]

Is cumulative data.

Note that both in \(+R \) large and \(+R \) small selection types, there is marked deficiency in \(-S\) as compared to random selection + cumulative data!