Dear Mr. CGars:

We have evidently been grinding in the shunt valves too tight *without* the right lubricant. The lubricant we have now found is boiling water proof, so a fine pour lubricant used in.JPG

hauling marine propellers & water pumps. We will send you a box & fix up your "Stretcher" for good & call. The new pump installed by Paulson may fall, for each must be lap fitted. The status of intercooling is to make a shankless high resistance with by a couple of winds of 1/2" gage. On patient arm + anesthetist winds + onto the knots of these clips an " bulldog clip" connect to insulated wire that supplies from the machine. This is 0/10 15/20 30/1.

I have done a great deal of work in starting "explosions," i.e., igniting Oxy acetylene. Never has the gage shown an igniting shock. The self-generated state works thru the metal jets.
high resisvors of Prof. Hoilm of the M.I.T. as tho
nobody was home to ignite gas every time.

Another unique finding is that with a
high charge of static on myself, I can polarize
a small metal body insulated from myself
or can polarize the wet surface of rubber
and get a spark to the "machine". This then was
the source of your shock. But disagreeing
with J. Williams, I do not think that dry rubber
surface has the generating capacity to break
a hold on igniting sparks. Whereas a damp
rubber interior can be polarized. I think OP
just like a rubber jar. What I want especially from you:

(1) It was there a metal neck on the Hardwick
bag which blew. If so the spark is easy
to explain. It charged from the anesthetist
or if there was rubber to metal. The
anesthetist hand was distant from the
metal apparatus and well insulated by the
metal apparatus. Then we can best assume a
polarization of wet bag interior to yield
the fairly substantial shock necessary to ignite
the freely substantial spark necessary to ignite
the fire of the fire.