Assume andon deq 1, against

$u^2 = 10$

$u^3 = 36$

$u^3 = 216$

Need 150 riders.

Cell-cell code, a letter, A B C D E F

1st letter, cell

216 final cells.

If 10hrs.

5 5 5
4 3 2
2 1 0

12345

Y

A B C U E F

+ + - - + + +

= 3 samples

Assume 5 letters 17

9-1-8 channels cell

2 checks, least check.

= triplet

8 x 6 = 48

512 kinds of triplets

A B C D

= 4

1 1

= 2
2 kinds of codes necessary

1) Embed 17 cell-cell contact to form circuit of

Predict Max 610 letters. Tip lots

Neural

2) Use circuit

Predict 1 of 1,000 words

1) Code for accessing cells

2) Prob < 12 letter alphabet

3) 12 x 12 = 144

144
Question

1) How many kinds of cells?

2) Mitochondria -> form A.A. sequence

3) Order cells all sequence

2) Cell assembly

a) Cell assembly rules

3) No rules

a) Nominal

b) Real

1) Order

2) EIA cell contact (IL-1)

3) Each cell poly A all made

10 cell forms

10 million

2) Ant DNA in double stranded

6 ~ 10 x 10^9

Approx. 100

And now much antigen info for any cell

200 E. coli for 1 cell polypeptide / cell
Rule 1. Logical code for ordering cells:

1. Repeat: 10
2. Set 100% size of cells / for max.
 Max. 100% cells / for max.
 Nearest int. = 200 face cells / whole form.

Rule:

- 2) Read 100% size of letters in alphabet.
- Read 1000 faces: 10,000 letters in alphabet.
- Print open letters
- 3) B: 5 letters / word = 22,250 words Max.
- 3 x 5 letters / word = 15 letter cell.
- Combine word? # different cells.

- 4) 1 word / cell

- 1 word / cell = 1,000
- 2 " / " = 100
- 3 " / " = 10
- 4 " / " = 1

If 4 words / cell,

- All recognize 1-4 words.

kinds of cells / container 1 cell = 1

1	1
2	1
3	1
4	1
5	1
6	1
Quest: How may all do cell enter?

1) Kind fall (hair, fibers) frequently
2) Occasionally
3) Rare
4) Petit, cell enter, 5 in hair fall

Guest

How may pricks do cell adhere?

1) Name
2) size describe on Martinez all
3) freym
4) Occasely
5) Race

Part # August 4 12
1) cell mean < 5 cell content
 1) never < 5 min
 and 5 < 5 " " " " (remains incomplete)

5 hair cell, com strength on
1 cell < 5 bend strength

[Predicting Neuron: "Do not look self just"]

(Often cell after 1 hair cell)

After look always turns. Other cell after 1 hair cell
I.

1. Logue of Design

 1) Fo Uink - Direction - Logic
 2) Logue - Abstraction, 1 thought
 3) Program - Program Design

 Parts may be added later.

2) 1-2000 copies/cell

3) Coded based on letter groups.

4) Long-term memory storage conditions.
Principle 2

1) Title
2)
3)

N"#A

Unit 129 # 4

C " III 64

RKT

20 ~ 3

1 ~ 3

RKT
3/10/68

General Notes

1) Log 1
2) Predominant (Log 1)
3) Flu Letten

Context:

3 patterns/segment = 1 pattern

4) Increase dureum without adjusting

100000 + 2 99999

1) Step 1 x Step 2

20 x 20 = 400

2) Even Cement

A

1/20 → B

A

C

A

B

C
Solution Approach

\[A + B \rightarrow AB \]

\[AB + C \rightarrow AC + B \]

\[\begin{array}{c|c|c|c}
 A & B & C & D \\
 \hline
 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 0 & 1 \\
 1 & 1 & 0 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
\end{array} \]

\(AB + C \rightarrow AC + B \)

\[\begin{align*}
 2 & \rightarrow 2 \\
 3 & \rightarrow 3 \\
 4 & \rightarrow 4 \\
\end{align*} \]

\[\text{Cloning the} \ 1 \text{st and 2nd pool} \text{. Cloning in 3rd and 4th pool} \]

\[\begin{array}{c}
 \text{Cloning in} \ 1 \text{st and 2nd pool} \\
 \text{Cloning in} \ 3 \text{rd and 4th pool} \\
\end{array} \]

\[\begin{array}{c}
 A & B & C \\
 \hline
 1 & 2 & 3 \\
 \end{array} \]

\[\begin{align*}
 u &= c = A \\
 u &= c \\
 A &= c \\
 A &= G \\
 C &= c \\
\end{align*} \]

\[\begin{align*}
 s &= 5 \\
 s &= 5 \\
\end{align*} \]
Hall = Hall = Hall = Hall

A u = 3.2 \times 10^8 / \text{gen} \text{unit} / 25 \text{m}^2

\text{A u} \approx \frac{510 \times 10}{25 \text{m}^2} = 1.4 \times 10^6 / \text{sec} / \text{cell}

1 \text{AH quan} / \text{cell} = 1.3 \times 10^9 \text{AA} / \text{min} / \text{cell} / 25 \text{m}^2

= 2.2 \times 10^5 \text{AA / sec / cell / 25 m}^2

\approx \frac{220,000 \text{AA / sec / cell}}{25 \text{m}^2}

\approx 1.4 \times 10^3 \text{AA / sec}

\approx 0.07 \text{sec} = 1 \text{AH quan}

\approx 3 \times 5 \times 2 = 30 \text{A}^3 = 1 \text{sigm quan} / \text{AA}

\approx 0.07 \text{sec} = 1 \text{AH / cell}

1 \text{cell} / \text{sec}

2.2 \times 10^5 \text{AA} / \text{sec} / \text{cell}

\text{quant} = \frac{1}{10^7} \text{A}^3 / \text{cell}

\text{quant} = \frac{1}{20} \text{A}^3 / \text{cell}

\text{quant} = \frac{1}{20} \text{A}^3 / \text{cell}
\[\text{Net Time} = \text{Igneous Melt} \times \text{Igneous Source} \times \text{Igneous Velocity} \]

\[M1 \times S \times V \]

\[\text{Mass} = \text{energy} + \text{state of system} \]

Template: Summary

1) Predict
2) Discussion of Findings
3) Time for next...
4) Position of President
5) Time of President

Order of Matter

\[\text{Density} + \text{Time of incumbent} \]

\[M1 + B1 + T1 = M2 \]
\[\text{ounce} \times \text{per} = \text{10 pints} \]

\[\text{per} = 0.5 \text{ inch (stiffness)} \]

\[\text{Tensile} = \text{(unit)} \]
3/10/65

Basic Neural Angles

\[\text{[} -] \]

\[y + \text{Firr + Dofr - Firr} = \text{[} -] \]

\[\text{[} -] + \text{Dofr Firr} + \text{[} -] = \text{Dofr Firr} \]

\[y + \text{Firr - Dofr Firr} + \text{Dofr Firr} = \text{Firr - Dofr Firr} \]

\[\text{[} -] + \text{[} -] = \text{+ - +} \]