1. Introduction

1. Purpose & importance of "Science and Art"
2. Design modifications that encourage creative actions of the mind and development of creative skills
3. My involvement - start late 1925 - 1930
 a. Professor, Institute - 1925, where my first disciple
 b. 1926 - 27 - BCS, Berkeley - School - Design School
 c. 1927 - 28 - New York - Columbia, Design Institute
 d. 1928 - 29 - Munich, Germany - Institute of Design
 e. Summer 1929 - Munich, Germany - Institute of Design
4. Summer 1929 - Munich - in my studio, summer 1929
 a. Summer 1929 - Munich - in my studio, summer 1929
 b. Summer 1929 - Munich - in my studio, summer 1929
 c. Summer 1929 - Munich - in my studio, summer 1929
5. Summer 1932 - Munich - in my studio, summer 1932
 a. Summer 1932 - Munich - in my studio, summer 1932
 b. Summer 1932 - Munich - in my studio, summer 1932
 c. Summer 1932 - Munich - in my studio, summer 1932
V. The Hypothesis - 1942 - large scale B-26 mission
1. H50 b. x, Kennedy-summer, 1944.
2. Hypothesis - B-26s - before healing - body.
 - German heavy - night.
 - German units, support.
3. The significance of air travel.
4. Planes. (c) 9th Feb, Kennedy plane could have multiple - aggressor - phosphorus.
5. The healing of - bodys - from war.
 - Winter 1944-45.
6. The needed - technology.
 - bombers, planes, patterns of operation.
7. Frankland - changes in patterns - turn.
 - next too.
8. Conclusions -
 - single event - mission - one cell gained what other.
 - cell body, what soon - contacted gene - infected.
 - many cell division - later.
 - determinin every - cell heavily - divided.
9. Conclusion - find out. Basic mechanism.
 - mutation of gene action theory.
 - NO DHA or Somatic materials accounted until 1941.
IV. Discovery of Mutations and the Genetic Code

1. Origin of life is de novo synthesis of genetic material
2. Relation to previous experiments - Ribosol - C, - DNA
3. History of life, evolution, growth, not purely work
5. Distribution of mutations - stable, common, rare
6. Offspring pool
7. AC: BC, transprotein, changes
8. Significance of action on genes

4. GA, RNA synthesis - DNA synthesis - RNA synthesis - Translation
5. Summary of transcription and translation

IV. Examples of modification of action by mutation

1. Bacterial Genetics
 - Recombination
 - Genetic engineering

2. Genetic Engineering
 - Bacterial Genetics
 - Phenotypic changes
 - Genetic engineering

3. Mutation in bacteria
 - Reversal of enzyme function
 - Expression of enzyme function
 - Genetic engineering
1. Control of product formation - 1) Gene, 67, 78, etc.
 a) all have regulated activity - turn on, off, programmed
 b) Some have other products - inhibit, suppress, pattern regulator -
 these products - programmed
 include product programming for each product - Example:
 - Receptor genes x 1000 - regulated vs other: Regulatory site.
 - Turn on genes x 1000 or down regulated - quantitative
 - Control of expression in the absence or presence
 - Receptors (receptor) or down regulated - Regulatory action
 - product: no action, Turn on or action, Cyclical
 - on-off programmed at receptor

2. Change in "acceptor" - changed timing response to turning on/off product of regulation. Status:

3. Programmed response - no change in nucleotide sequence: regulatory
 sequence - see how to give back - protein

4. Non-coding patterns - (Capo, loop 1886 to 1816; Chat 1900 to 1910),
 many gaps present, sequence of base - can regulate then.

5. Most significant - Functional (pH, temperature) - Reason:
 Requirements illustrated by mutation.
1. The following clauses are to be used for each section:

 a. Section opening clause
 b. Section closing clause

2. The text should be written in complete sentences.

3. The text should be written in a clear and concise manner.

 a. Use of abbreviations should be kept to a minimum.

 b. The text should be free of grammatical errors.

 c. The text should be free of spelling errors.

4. The text should be written in a logical and coherent manner.

 a. The text should be organized into paragraphs.

 b. The text should be easy to follow.

 c. The text should be clear and easy to understand.

5. The text should be written in a manner that is consistent throughout the document.

 a. The text should be written in a consistent font.

 b. The text should be written in a consistent size.

 c. The text should be written in a consistent style.

 d. The text should be written in a consistent format.

6. The text should be written in a manner that is easy to read.

 a. The text should be written in a manner that is easy to scan.

 b. The text should be written in a manner that is easy to understand.

 c. The text should be written in a manner that is easy to follow.

7. The text should be written in a manner that is easy to remember.

 a. The text should be written in a manner that is easy to recall.

 b. The text should be written in a manner that is easy to reproduce.

 c. The text should be written in a manner that is easy to apply.

Slide 15:

- **思路：**
 - 模拟器输出：
 - 假设条件：
 - 假设条件：

Locations of Areas - Detection:

1. Initially: (area)
2. (area)
3. (area)
4. (area)
1. Ear: Maize.
2. Paclayten - Maize.
3. Diagram - Ringelke, Beiml.
5. Photo - Bridge 8, K, T.
6. " - " Photo, D, P, E, T, G, T.
8. Diagram: Dep. e to 90
11. Diagram: G. 0, 0, 0, rice.
13. Photo - Z 0, 0, 0, 0, 0, 0, 0, 0.
14. Ear: Color - Z 0, 0, 0, 0, 0, 0, 0, 0.
15. Color: Commercial maize.
17. Kernels: 0.1, 0.1, 0.1, 0.1, 0.1..