May 12, 1931.

Dear Charlie,

My greenhouse can be just mind-blowing. I took a long time for maturity. I love a light for the first few days, I expect this increased the time of growth before flowering.

I have grown tobacco material of # 5 (8x - 10 mm) + helianthus in the 3x - 5x showy. I have 15 counts a 7 from 4. The show is 9:1 ratio for 3x but the reproduction wasn't perfect.

The tobacco of # 8 (2nd longest) showed clearly their 3x is not involved.

The race of tobacco is showing good separation. I imagine that the other clones in this race are not involved. Rhizobia is taken care of involved in 2 is 2u - 7m or 81 - vs. The tobacco is ready to be cut to 2u - 7m. I have # 7 for 81 - vs cut at 2u - 7m.

Concerning the tobacco counts I have been wanting to come to you.
B11_{(3/13)} \times B5_{11} = \text{M220.}

25-30\% \text{ red}\% \text{ white} \rightarrow \text{ could pop red + white.}

\text{12}\text{ true plants of 270 = 4 plants examined. 2 were 25-30 so sterile.}
\text{1 was 12-15 so sterile + 1 8.3 so sterile. The one that was 12-15 so}
\text{sterile (270) was \(\text{X} \). It gave \(\text{II Purple Sh} \text{; Sh \text{Wx} : 1 purple}
\text{Sh}\text{Wx} : 25 \text{ colors; Sh Wx} : 5 \text{ colors; Sh Wx} : 9 \text{ colors; Sh Wx} : 2
\text{ predators sh heir.}}
\text{There kernels were planted in the future last}
\text{summer, and we gave to my culture 388. 8 were 24 + 13 were}
\text{2n+1. 12 of the 2n+1 plants were 12-15 so sterile; I possessed the}
\text{2nd smallest chromosome (388F0).}

388 A0, D0 + A were from C Sh Wx seeds were thrown. Pollen
\text{counts were made on 388 D0 during 1415 Wx: 69 Wx: 347 red,}
\text{which is 21.5 Wx:148 24.67% red. Sterility 16.35%. When}
\text{the pollen was used on c. sh - my plants:}

\begin{align*}
296 \times 388 D0 C \text{SH Wx seeds were thrown.}
\text{no polli}
\end{align*}

\begin{align*}
\text{Wx} & \quad \text{my} \quad \text{Wx} \\
27 & \quad 12 & \quad 3 & \quad 0 & \quad 0 & \quad 0 & \quad 172 & \quad 5
\end{align*}

\text{Therefore 388 D0 = } \frac{c. \text{ sh} \text{ Wx}}{c. \text{ sh} \text{ Wx}} \text{ CSH \text{ Wx} Wx}
389 C

\[
\frac{389 \text{Cm}}{10} \times \frac{389 \text{A}}{10} = \frac{389 \text{Cm} \times \text{A}}{10} = \frac{3890 \text{CmA}}{10} = 389 \text{CmA}
\]

Therefore, 389 Cm = 389 CmA.

388 D

The partial plateau was equal to e. CmA:

\[
\text{Therefore } 388 \text{D} = \frac{e \times \text{CmA}}{10} \frac{1}{10} \text{CmA}
\]

388 D

The partial plateau was equal to e. CmA:

\[
\text{Therefore } 388 \text{D} = \frac{e \times \text{CmA}}{10} \frac{1}{10} \text{CmA}
\]

In summary, partial plateau was equal to e. CmA.

<table>
<thead>
<tr>
<th>196</th>
<th>3870</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>197</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>194</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Therefore, } 388 \text{D} = \frac{e \times \text{CmA}}{10} \frac{1}{10} \text{CmA}
\]

It is assumed that the grain did not function.

388 A

\[
\frac{388 \text{A}}{10} \times \frac{1}{10} \text{mA} = \frac{388 \text{mA}}{100} = 3.88 \text{mA}
\]

Which was determined to your 25\%.

388 A were grown in 20 plants, which were biologically for the root. Of these, 9 were 24 and 10 were 25%.

The results were as follows:
H10A.

B. B. 26 Trav.: 13

1. 5.5.808080
2. 9.9.9.9
3. 7.7.7.7.

The quantity of grain was as follows:

- Wheat: 465,000 lb.
- Barley: 26,000 lb.
- Oats: 113,000 lb.

Total: 612,000 lb.

The quantity of barley was:

- 20,000 lb.
- 10,000 lb.
- 5,000 lb.
- 1,000 lb.

Total: 45,000 lb.

The quantity of oatmeal was:

- 20,000 lb.
- 10,000 lb.
- 5,000 lb.
- 1,000 lb.

Total: 39,000 lb.

The total quantity of grain was 612,000 lb.

The quantity of flour was:

- 20,000 lb.
- 10,000 lb.
- 5,000 lb.
- 1,000 lb.

Total: 39,000 lb.

The quantity of wheat flour was:

- 20,000 lb.
- 10,000 lb.
- 5,000 lb.
- 1,000 lb.

Total: 36,000 lb.

The quantity of barley flour was:

- 4,000 lb.

Total: 4,000 lb.

The quantity of oatmeal flour was:

- 3,000 lb.

Total: 3,000 lb.

The total quantity of flour was 43,000 lb.
Samsen from 358 A to 416 A

1. Wk
 Vx
 Wk
 Vx
 Vx

2. Wk
 Vx
 Wk
 Vx
 Vx

x-over

No proof. 1570 (within known limits).

From 1 to 1 + 1

Because few 1-genes, than 1 + 1

1. No reason why 21 + 1 produces less 21 + 1
 individuals than 21 (reverse order of some condition).

The 3 X 3 types of boxes

should tell something about the distribution

now study in needed. I think I have

included most of the necessary information

for you to work on. These are some initial

ing things to do but the value may not be

worth the effort in most cases.

Tell Brady I have it forgotten

to write him but I have a number

ing things to discuss so have postponed.

What have you heard? If you do not see a reason what do you expect
to do?
Harris is coming back with the problem. I am very sorry I am not going to be with him in the work. I think the rest of us would do much better than either alone.

Let me know what is new and what you are doing. You can reach me at Branner Hall, c/o J. J. Stutter, University of Missouri, Columbia, Mo., after June 1.

Too bad about Marion & Beadle. I think it is for the best, also.

Best,

P.S.

Would you care to write up the order of the genes of the e-d-a-m linkage group with me? I think it ought to be done soon and should go in the next USDA report. Your unpublished data is as essential as mine. Let me know what you think.