Dear Dr. Sokoloff

I was very glad to see you again in NIH. I enjoyed your clear lectures very much. Since I returned to Japan, I have been looking for laboratory for Radio-isotope use because in my hospital we are prohibited from using RI for animals. But, I will solve this problem soon.

I am always thinking about the equation to get \(V_m^* \) and \(K_T^* \). You gave me a equation to solve \(V_m^* \) and \(K_T^* \) for methyl glucose as follows.

\[
\begin{align*}
\text{m MG} &= \frac{K_{MG}}{K_{IAP}} \times \frac{\lambda_{MG}}{\lambda_{MG}} \\
&= 1 - e^{-(PS*)_{MG}} \\
\text{PS}^* - C_P^* &= V_m^* - PS^* \left(1 + \frac{C_P}{K_T}\right) \times K_T^* \text{ TRUE} \cdot \text{MG}
\end{align*}
\]

I have several question about equation.

Q1. To get \(V_m^* \) and \(K_T^* \). We need \(PS^* \) values at different plasma glucose concentration. To get diffusion limitation of methyl glucose (\(\text{m MG} \)), we also need information about \(\lambda_{MG} \) and \(\lambda_{IAP} \) according to Eq(1). I know \(\lambda_{MG} \) is different at different plasma glucose concentration. How about \(\lambda_{IAP} \)? Is it different at different plasma glucose concentration?
Do I need data of \(\lambda \) IAP at different plasma glucose concentrations by different animal groups?

Q2. Eq\(^3\) is final equation to get \(V_m^* \) and \(K_T^* \). I know \(K_T \) for glucose is about 6.8. However, is \(K_T \) same value at different plasma glucose concentration and different brain structures?

In pathological condition, I think \(K_T \) should change. So, according to Eq\(^3\), it is impossible to get \(V_m^* \) and \(K_T^* \) without information of \(K_T \).

What do you think about that?

I know you are extremely busy person. But, could you answer my questions?

I am looking forward to seeing in Sendai next year. I will attend reunion party in Sendai.

Sincerely yours

Kentaro Mori

[Signature]