due to relationships which may exist between smoking and factors such as parental neglect or socioeconomic class. In addition, hospital admission rates may not be an accurate index of infant morbidity.

Colley, et al. (13) studied the incidence of pneumonia and bronchitis in 2,205 children over the first 5 years of life in relation to the smoking habits of both parents. They found that a relationship between parental smoking habits and respiratory infection in children occurred only during the first years of life (Table 6). They also showed a relationship between parental cough and phlegm production and infant infection (Table 6) which was found to be independent of the effect of parental smoking habits. The relationship between parental smoking and infant infection was greater when both parents smoked and increased with increasing number of cigarettes smoked per day. The relationship persisted after social class and birth weight had been controlled for.

Thus, respiratory infections during the first year of life are closely related to smoking habits independent of parental symptoms, social class, and birth weight. Because of the dose-response relationship between parental smoking and infant respiratory infection established by Colley, et al. (13), it is reasonable to suspect that cigarette smoke in the atmosphere of the home may be the cause of these infections; however, other factors such as parental neglect may also play a role.

The above studies examined the effects of involuntary smoking on relatively healthy people. A substantial proportion of the U.S. population suffers from chronic cardiovascular and pulmonary diseases, however, and they represent the segment of the population most seriously jeopardized by conditions found in involuntary smoking situations. In Chapter 1 of this report (Cardiovascular Diseases) evidence was presented which showed that levels of CO sometimes experienced in smoke-filled environments (50 ppm) are capable of significantly decreasing the exercise tolerance of persons with angina pectoris and intermittent claudication. In addition, these levels of CO have been shown to decrease cardiac contractility and to raise left ventricular end-diastolic pressure (an indication of heart failure) in persons with cardiovascular disease.

Persons with chronic bronchitis and emphysema have considerable excess mortality under conditions of severe air pollution. In smoke-filled environments levels of CO and several other pollutants may be as high or higher than occur during air pollution emergencies. The effects of short-term exposure of persons with chronic obstruc-
TABLE 6. - Pneumonia and bronchitis in the first 5 years of life by parents' smoking habit and morning phlegm

<table>
<thead>
<tr>
<th>Year of Followup</th>
<th>Both nonsmokers</th>
<th>One smoker</th>
<th>Both smokers</th>
<th>Both ex-smokers or one ex-smoker or smoking habit changed</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>O/B</td>
<td>N</td>
<td>O/B</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>7.6</td>
<td>10.3</td>
<td>11.4</td>
<td>14.8</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>(343)</td>
<td>(29)</td>
<td>(424)</td>
<td>(128)</td>
<td>(339)</td>
</tr>
<tr>
<td>2</td>
<td>8.1</td>
<td>8.3</td>
<td>8.3</td>
<td>13.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>(322)</td>
<td>(36)</td>
<td>(365)</td>
<td>(129)</td>
<td>(286)</td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
<td>8.1</td>
<td>8.1</td>
<td>10.3</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>(385)</td>
<td>(37)</td>
<td>(353)</td>
<td>(107)</td>
<td>(242)</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>11.1</td>
<td>7.3</td>
<td>10.8</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>(287)</td>
<td>(36)</td>
<td>(306)</td>
<td>(102)</td>
<td>(236)</td>
</tr>
<tr>
<td>5</td>
<td>6.7</td>
<td>14.7</td>
<td>5.6</td>
<td>9.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>(285)</td>
<td>(34)</td>
<td>(267)</td>
<td>(107)</td>
<td>(208)</td>
</tr>
</tbody>
</table>

NOTE. - N=neither with winter morning phlegm, O/B=one or both with winter morning phlegm.
Source: Colley, J.R.T., et al. (13).
tive bronchopulmonary disease (COPD) to these conditions have not been evaluated. Persons with COPD are also possibly at increased risk to CO exposure because of their low alveolar Po$_2$. Due to the reduced amount of oxygen available to compete with the CO for hemoglobin binding sites, these persons might experience a carboxyhemoglobin to oxyhemoglobin ratio higher than those in healthy subjects under the same conditions of CO exposure. The retention of CO may also be prolonged due to both this increased binding of CO to hemoglobin under low alveolar Po$_2$ and decreased ventilatory capacity to excrete CO.

In summary, the effects of cigarette smoke on healthy nonsmokers consists mainly of minor eye and throat irritation. However, people with certain heart and lung diseases (angina pectoris, COPD, allergic asthma) may suffer exacerbations of their symptoms as a result of exposure to tobacco smoke-filled environments. These effects are dependent on the degree of individual exposure to cigarette smoke which is determined by proximity to the source of the tobacco smoke, the type and amount of tobacco product smoked, conditions of room size and ventilation as well as the amount of time the individual spends in the smoke-filled environment, and his physiologic condition at the time of exposure.
SUMMARY

1. Tobacco smoke can be a significant source of atmospheric pollution in enclosed areas. Occasionally under conditions of heavy smoking and poor ventilation, the maximum limit for an 8-hour work exposure to carbon monoxide (50 ppm) may be exceeded. The upper limit for CO in ambient air (9 ppm) may be exceeded even in cases where ventilation is adequate. For an individual located close to a cigarette that is being smoked by someone else, the pollution exposure may be greater than would be expected from atmospheric measurements.

2. Carbon monoxide, at levels occasionally found in cigarette smoke-filled environments, has been shown to produce slight deterioration in some tests of psychomotor performance, especially attentiveness and cognitive function. It is unclear whether these levels impair complex psychomotor activities such as driving a car. The effects produced by CO may become important when added to factors such as fatigue and alcohol which are known to have an effect on the ability to operate a motor vehicle.

3. Unrestricted smoking on buses and planes is reported to be annoying to the majority of nonsmoking passengers, even under conditions of adequate ventilation.

4. Children of parents who smoke are more likely to have bronchitis and pneumonia during the first year of life, and this is probably at least partly due to their being exposed to cigarette smoke in the atmosphere.

5. Levels of carbon monoxide commonly found in cigarette smoke-filled environments have been shown to decrease the exercise tolerance of patients with angina pectoris.
BIBLIOGRAPHY

Chapter 8

Allergy

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>513</td>
</tr>
<tr>
<td>Antigenic Properties</td>
<td>514</td>
</tr>
<tr>
<td>Skin Testing</td>
<td>515</td>
</tr>
<tr>
<td>Additional Immunological Effects</td>
<td>517</td>
</tr>
<tr>
<td>Effect on the Immune Response</td>
<td>518</td>
</tr>
<tr>
<td>Irritant and Pharmacologic Effects</td>
<td>519</td>
</tr>
<tr>
<td>Clinical Allergy</td>
<td>520</td>
</tr>
<tr>
<td>Summary</td>
<td>521</td>
</tr>
<tr>
<td>References</td>
<td>522</td>
</tr>
</tbody>
</table>
INTRODUCTION

As early as 1886 reference was made to an entity called "tobacco asthma" (64). Subsequently, controversy has arisen over whether tobacco smoking causes clinical allergy (61) and whether such tobacco allergy is associated with the major smoking-related diseases (25, 69).

In 1957, Silvette, et al. (64) reviewed more than 100 papers concerned with "the immunological aspects of tobacco and smoking." They concluded that inadequate animal studies had been performed in this area. Referring to clinical studies, they observed: "... virtually all reported clinical investigation has been limited to determinations of cutaneous sensitivity to tobacco extracts; and it must be regretfully admitted that much of this published work is equivocal, uncritical, and inadequately controlled."

Such criticism is also applicable to many studies published since then.

Epidemiologic studies designed to determine the prevalence of tobacco allergy have not been carried out; hence, it is difficult to evaluate the magnitude of the problem.

Allergy may be defined as a specific alteration in response mediated by an antigen-antibody reaction. When a hereditary susceptibility to allergic illness is present, the term atopy is used. For example, hay fever and asthma are atopic diseases.

There is no single test or observation which can be used to determine whether a substance may be responsible for allergic disease; however, fulfillment of the following criteria constitutes evidence for such a relationship:

1. Demonstration that the substance is antigenic, i.e., capable of stimulating the production of antibody and then reacting with the antibody.

2. Demonstration that, upon exposure to the substance, signs and symptoms simulating an allergic reaction are elicited which disappear upon its removal.

3. Demonstration that the immunologic event is related to the clinical event.

Recent advances in the understanding of immunological reactions as well as in the methodology of immunology are now being applied
to problems of clinical allergy. For example, Ishizaka (37), using radioimmunoalectrophoresis, recently reported that the so-called "allergic antibody" (reagin, skin-sensitizing antibody (SSA), atopic antibody) belongs to a new class of immunoglobulins, IgE.

Although the skin test remains a simple and definitive method of demonstrating reagins in the allergic patient, there are many variables involved in this technique which must be carefully weighed when interpreting test results. In the area of tobacco skin testing, such variables include: differences in antigenic content of the test extract, differences in route of administration, and heterogeneity of test groups.

ANTIGENIC PROPERTIES

Tobacco leaf contains a complex mixture of chemical components including: celluloses, starches, proteins, sugars, alkaloids, pectic substances, hydrocarbons, phenols, fatty acids, isoprenoids, sterols, and inorganic minerals (69). Theoretically, relatively few of these substances should be antigenic. Tobacco extracts of different composition result from differences in tobacco types and species, processing of tobacco, and preparation of the extract. Harkavy (26) has shown in some patients a differential skin reactivity to extracts from different types of tobacco. Coltoiu, et al. (9) reported that 13 different antigens capable of inducing precipitins in rabbits have been isolated from tobacco pollen. Chu, et al. (7) prepared aqueous extracts of five commercial tobacco products which stimulated antibody formation in rabbits. The antigens contained in the extracts included both proteins and polysaccharides and had molecular weights ranging from 20,000 to 60,000.

Silvette, et al. (64) reviewed several papers dealing with the immunology of nicotine and concluded that nicotine was nonantigenic. Harkavy (25), who performed some of the earliest studies on the antigenicity of nicotine, could not exclude the possibility that nicotine may act as a hapten. A hapten is a compound which, although not antigenic by itself, reacts with antibody and conveys antigenic specificity when combined with another compound.

With pyrolysis many of the tobacco constituents undergo reactions involving oxidation, dehydrogenation, cracking, rearrangement, and condensation (69). Many new compounds are formed. Pipes (51) demonstrated, through exhaustion of passive transfer reactivity in skin sites, that allergy to tobacco smoke in man is distinct from that of allergy to tobacco leaf. Tobacco smoke exhausted reactivity in sites injected with tobacco smoke sensitized serum; reactivity was reduced but not exhausted with tobacco extract. The converse was true with passive transfer sites of tobacco-sensitized serum; tobacco extracts abolished allergic reactivity whereas to-
bacco smoke extract produced a diminution but not total exhaustion. He concluded that it would be useful to test human subjects for both tobacco leaf and tobacco smoke sensitivity. Kreis, et al. (39) have speculated that tobacco leaf antigenicity may be lost with pyrolysis. Coltoiu, et al. (9) recently emphasized the importance of removing all irritants from test extracts. In a clinical setting, allergy to tobacco additives such as menthol has also been suspected (47).

SKIN TESTING

Intracutaneous injection of test antigen is a widely used method of skin testing. Patch tests have also been used in cases of suspected contact dermatitis.

Røsen (54) has observed that skin testing does not accurately duplicate the most common route of exposure to tobacco, i.e., tobacco smoke inhalation. For those involved in the production of tobacco products, inhalation of tobacco dust or direct contact with tobacco may play important roles in sensitization (9).

The extensive literature on cutaneous sensitivity to tobacco extracts includes comparisons of the prevalence of positive skin reactions in different groups, such as "normal" nonsmoking adults (17, 88), "normal" smokers (17, 33), allergic patients (59, 76), children (41, 50), tobacco workers (6, 9), and patients with specific diseases, e.g., thromboangiitis obliterans (28, 73). Harkavy reported on tobacco skin reactions in several different groups of patients (30). Many of the apparently discordant results in some of these reports can be traced to failure to compare similar populations or to control for differences in the test antigen or in the method of testing.

Sulzberger (66) studied the different types of skin reactions produced by intracutaneous injection of denicotinized tobacco extract. Three types of positive skin responses were observed: eczematous reactions; immediate wheal-and-flare reactions; and late reactions, probably of the tuberculin type. The wheal-and-flare response has been by far the predominant type (42).

This immediate wheal-and-flare response is a specific immune reaction (64) largely mediated by IgE. Patterson (48) recently proposed a simplified model explaining the mechanism of action of the skin sensitizing antibody (SSA). "Subsequent to stimulation of the animal by antigen, SSA are produced by cells of the lymphoid system possibly located in the alimentary and respiratory tract. . . . The SSA so produced are secreted in such a way that they reach the circulation, where circulating cells, predominantly basophilic leukocytes, are sensitized by attachment of the SSA to the cell surface. In addition, the SSA also leave the vascular compartment and sensitize mediator-releasing cells in tissues. The tissue cells are primarily mast cells . . . The immediate-type allergic reaction occurs
when antigen is introduced into the individual sensitized by SSA, either by transfer of antigenic molecules through the respiratory or alimentary mucosal surface or by injection into the skin or vascular system. The antigens reach the antibody on the surface of the mast cells and initiate the intracellular events that result in mediator release from the cells. The actions of these mediators include smooth muscle contraction, vasodilation, and increased capillary permeability which can produce such clinical pictures as hay fever, asthma, and generalized anaphylaxis.

Until recently, direct skin testing and the passive transfer test (Prausnitz-Küstner reaction) were the only methods of studying IgE mediated responses. In the passive transfer test, serum from an allergic patient is injected into the skin of a normal subject. After a suitable interval the antigen is injected into the prepared site and adjacent normal skin. In a positive response, cutaneous reactivity is transferred to the normal subject at the injection site. The absence of a positive response in nearby normal skin excludes nonspecific irritation as a cause of the response and shows that the normal subject is not himself allergic to the antigen.

Harkavy and Witebsky (34) found and selectively absorbed tobacco reagins in patients showing multiple sensitivities. This selective absorption documented the immunologic mechanism of the skin reaction. Passive transfer of the SSA was also reported by Peshkin and Landay (50) and by Lima and Rocha (42). Lowell (43) stated, "The individual possessing skin-sensitizing antibody to the tobacco extract may be regarded as unequivocally allergic to the extract..." Despite the inability of Sulzberger and Feit (67) to demonstrate tobacco reagins in their skin test positive patients, several investigators have found them (26, 50, 75).

Harkavy (23) biopsied urticarial wheals after intradermal injection of tobacco extract and found a local eosinophilia. He felt that this helped confirm the allergic mechanism of the positive skin test. He also biopsied the site of a delayed skin reaction to tobacco and found an eczematous type of response.

The delayed type hypersensitivity reaction is manifested by induration and erythema developing within 24 to 48 hours after injection of antigen. The absence of response in the first 6 to 8 hours after exposure to antigen helps exclude an'Arthus reaction, which is also a slowly evolving allergic response. Serum antibodies are not involved in the initiation of delayed type hypersensitivity; rather, the initial step is thought to involve interaction of antigen and specialized lymphocytes (10, 11). Contact dermatitis is thought to be very nearly a pure type, delayed hypersensitivity reaction (10, 11).

The foregoing discussion has highlighted the studies concerning cutaneous sensitivity to tobacco extracts. Despite the complexities and contradictions, numerous workers agree that tobacco extract
(leaf or smoke) is antigenic and can sensitize (2, 7, 9, 18, 26, 43, 50, 52, 64, 66, 76). Silvette, et al. (64) concluded, “It is, indeed, beyond question that allergy to tobacco extracts, presumably atopic in nature, is an established fact...”

Lowell (43) observed that, in most instances, skin reactivity to an extract of tobacco actually means the presence of allergy in some degree to something in the extract. Armen and Cohen (2), Harkavy and Periman (51), and Popescu, et al. (52) observed that tobacco extract is weakly antigenic. Armen and Cohen (2) were able to sensitize rabbits to tobacco proteins only after absorbing the protein to aluminum hydroxide, which served as an adjuvant.

Even though a positive skin test to tobacco extract may be due to a specific allergic reaction, the interpretation of such a positive test in a given patient or group of patients poses problems, since sensitivity to a battery of antigens has been demonstrated in individuals who are entirely free from allergic symptoms upon exposure to the antigens. Rosen (54) stated that this lack of correlation between positive skin tests and clinical symptoms is greater for tobacco than for other antigens such as pollens, dusts, and feathers. He and others have emphasized that the skin test has value only when correlated with clinical evidence.

Analysis of skin test studies in nonsmokers (64) shows that approximately 15 percent of such “healthy” individuals give positive reactions to tobacco extracts. Some studies of smokers reporting a 30 percent or more prevalence of skin sensitivity to tobacco extract (33, 43) have considered patients with multiple sensitivities, including that to tobacco. Atopic individuals have been noted to have a greater prevalence of skin sensitivity to tobacco than non-atopics (64); hence, in some studies an excess of atopic patients may account for a substantial part of the elevated prevalence of tobacco skin sensitivity reported for smokers.

Several workers have sought to use the skin test as a screening device for indicating an unusual susceptibility to the adverse effects of tobacco. DeCrimis, et al. (18), Fontana (17), and Redisch (53) have reported that patients with positive skin tests to tobacco extracts were more likely to have an adverse vascular response to tobacco as indicated by a fall in peripheral skin temperature on smoking. More recent studies have shown that a decrease in skin temperature with smoking is a reproducible response to nicotine found in “normal” individuals and does not appear to be confined to a specific group of smokers (1, 56, 70).

ADDITIONAL IMMUNOLOGICAL EFFECTS

Additional evidence is available to support the view that tobacco induces immunologic changes in man and animals. Armen and
Cohen (2), Chu, et al. (7), Harkavy and Perlman (31), and Zussman (76) induced precipitin formation in animals sensitized to tobacco extract. Kreis, et al. (39) studied precipitation reactions in 651 hospitalized patients, many of whom were suffering from tuberculosis or lung cancer. A precipitation reaction between the patients' sera and a commercial tobacco extract was found in 62.5 percent of the patients. Chu, et al. (7), using the same antigens as those employed to stimulate precipitin formation in rabbits, found serum antibodies in 40 percent of a group of smokers which precipitated specifically with the tobacco antigens. Only 7 percent of a group of nonsmokers demonstrated these antibodies.

Savel (59) studied eight nonsmoking, allergic individuals who developed immediate upper respiratory discomfort after being exposed to cigarette smoke. As measured by the uptake of tritiated thymidine, the lymphocytes of these individuals were stimulated by cigarette smoke, while "normal" lymphocytes were depressed. The author stated that the correlation of this test with specific forms of clinical allergy remains uncertain.

Some investigators have observed abnormal laboratory test results in smokers as compared to nonsmokers, which may indicate an allergic response in the former group. Schoen and Pizer (60) described a smoking woman who demonstrated a striking blood eosinophilia while smoking cigarettes. Upon cessation of smoking, the eosinophil count returned promptly to normal levels. Resumption of smoking was associated with a return of the eosinophilia. Heiskell, et al. (36) found a significant increase in C-reactive protein and an abnormal seroflocculant for ethyl cholendiate in smokers as compared to nonsmokers. Plasma histaminase levels were reported by Kameswaran, et al. (38) to be elevated in smokers.

Experimental animal sensitization to tobacco was reported by Friedlander, et al. (19) in male rats. Harkavy (29) confirmed these results in male rats and also obtained positive Schultz-Dale reactions in the sensitized animals; however, female rats failed to demonstrate this sensitization. Harkavy (24) reported cardiac histological abnormalities in three rabbits sensitized with denicotinized tobacco extracts. The abnormalities found in the three rabbits, respectively, included: intimal proliferation, focal fragmentation of the internal elastic membrane, and loss of smooth muscle fibers in the media of a branch of a coronary artery; focal intimal proliferation and fibrinoid alterations in the media of a small coronary vessel; and a focus of myocardial fibrosis and necrosis.

EFFECT ON THE IMMUNE RESPONSE

The effect of tobacco on the immune response has received some attention. Early studies in rabbits suggested that tobacco smoke re-
tarded the production of agglutinins in rabbits immunized against typhoid (14).

A variety of observations indicate that ingestion of antigenic material by the macrophage may be an essential step in the immune response (8). Bruni (5) found that cigarette smoke suppressed phagocytosis in rabbits. Green and Carolin (20) performed in vitro studies in rabbit alveolar macrophages and observed that cigarette smoke inhibited the capacity of these cells to inactivate bacteria. Harris, et al. (35) reported no differences in the phagocytic ability of macrophages taken from human smokers and nonsmokers, but he also concluded that his data neither contradicted nor supported Green's work. Cohen and Cline (8), while noting that macrophages from smokers had normal phagocytic capacity, demonstrated suboptimal macrophage function in an environment of low O2 tension, a state found more frequently in smokers than nonsmokers. Maxwell, et al. (45), using guinea pigs, found that smoke exerted no effect on phagocytosis; nevertheless, smoke seemed to impair the phagocytes' ability to inactivate bacteria. Nicotine has been shown by Meyer, et al. (40) to exert a depressant effect on sheep pulmonary alveolar macrophage respiration and ATPase activity. Recently, Yeager (74) reported that water soluble constituents of cigarette smoke depress protein-synthesis in rabbit alveolar macrophages in vitro.

Lewis, et al. (40) found that cigarette smoking had a suppressive action on secretory IgA production in normal subjects but not in subjects with chronic respiratory disorders. Vos-Brat and Rumke (71) recently reported that IgG serum concentrations and the response of lymphocytes to phytohemagglutinin were significantly lower in smokers than nonsmokers.

A number of investigators have reported increased rates of respiratory illnesses among cigarette smokers (70). Finklea, et al. (16) studied antibody response in 289 volunteers after the 1968 Hong Kong influenza epidemic. They reported a significant decrease among cigarette smokers in the persistence of hemagglutination inhibition antibody after natural infection or vaccination with A2 antigens. They postulated that this antibody deficit among cigarette smokers might be related to increased illness during influenza outbreaks.

IRRITANT AND PHARMACOLOGIC EFFECTS

As Lowell (43) has emphasized, the pharmacologic, irritant, and allergic effects of tobacco are difficult to distinguish. Acrolein and acetaldehyde are potent irritants found in tobacco smoke, which, as demonstrated in animal studies, are capable of releasing chemical mediators such as histamine (58). The inhalation of tobacco smoke
causes bronchial constriction, mucus hypersecretion, and ciliary stasis (57) in man, all of which can contribute to a clinical picture indistinguishable from an allergic reaction. Several authors (44, 61, 65) share Sherman's (62) view that "... tobacco smoke is an important secondary factor in precipitating allergic symptoms through its action as a nonspecific irritant."

Speer (65) recently compared the subjective responses of two groups of nonsmokers to tobacco smoke exposure. One group of 191 patients suffered from documented allergies. In one-sixth of these patients a positive skin test to tobacco extract was found, but only a few patients were seen with objective symptoms which could be traced to tobacco smoke. The other group of 250 patients had no history of allergy and was studied by questionnaire only. Eye irritation, nasal symptoms, headache, and cough were common in both groups. Speer concluded that these effects of tobacco smoke were irritative rather than allergic in origin. The data presented in this study demonstrate that tobacco smoke can contribute to the discomfort of many individuals; they do not rule out a possible contribution from allergic reactions.

Harkavy (80) cited experimental data distinguishing allergic effects from pharmacologic effects of smoking such as increased heart rate and decreased skin temperature.

Additional studies are needed to separate the pharmacologic, irritant, and allergic effects of tobacco smoke.

CLINICAL ALLERGY

It is important to understand what role tobacco and tobacco smoke may play in clinical allergy because many individuals are exposed to them in varying concentrations throughout the year.

A variety of conditions have been ascribed to allergic manifestations toward tobacco leaf or smoke including: asthma, rhinitis, urticaria, angioneurotic edema (giant hives), contact dermatitis, migraine headache, gastrointestinal symptoms, and various cardiovascular disturbances (64); however, some case reports are lacking in documentation (4, 49). A small group of patients having cutaneous sensitivity to tobacco and showing complete disappearance of symptoms when free from exposure to tobacco were reported by Rosen and Levy (55). Included in this group were cases of asthma and urticaria.

Studies of atopic individuals have revealed a group of nonsmoking patients with cutaneous sensitivity to tobacco who developed clinical symptoms upon exposure to tobacco smoke (59, 76). In none of these studies (54, 59, 76) have detailed immunologic investigations, attempting to link clinical and immunologic events, been performed.

Lowell (43) reviewed case reports of contact dermatitis to to-
bacco among tobacco workers and noted that because of "...the small proportion of exposed individuals who develop such lesions, and the tendency for it to clear completely when contact with tobacco is avoided and to return on reexposure, an allergic cause in certain instances would appear to be highly probable." Recently, case reports have appeared identifying tobacco smoke and tobacco smoke residue as causes of contact dermatitis (6, 12, 72).

Harkavy's (28) early reports of a greater number of reactors to tobacco extract among patients with thromboangiitis obliterans (TAO) than among controls drew attention to the cardiovascular system as a possible "susceptible" organ for allergic reactions (15). Harkavy continues to be a strong proponent of the role of tobacco allergy in a wide range of cardiovascular abnormalities, including coronary artery disease (21, 22, 25, 27, 31, 32). This view on tobacco allergy as one of the etiological factors in coronary heart disease (CHD) has not received much attention.

Silvette, et al. (64) reviewed reports (28, 33, 66, 68, 73) on the prevalence of skin sensitivity in patients with TAO as compared to controls and cited possible reasons for a higher prevalence of positive skin tests to tobacco in these patients.

In general, the evidence relating TAO to tobacco allergy is inconclusive.

SUMMARY

1. Tobacco leaf, tobacco pollen, and tobacco smoke are antigenic in man and animals.

2. (a) Skin sensitizing antibodies specific for tobacco antigens have been found frequently in smokers and nonsmokers. They appear to occur more often in allergic individuals. Precipitating antibodies specific for tobacco antigens have also been found in both smokers and nonsmokers. (b) A delayed type of hypersensitivity to tobacco has been demonstrated in man. (c) Tobacco may exert an adverse effect on protective mechanisms of the immune system in man and animals.

3. (a) Tobacco smoke can contribute to the discomfort of many individuals. It exerts complex pharmacologic, irritative, and allergic effects, the clinical manifestations of which may be indistinguishable from one another. (b) Exposure to tobacco smoke may produce exacerbation of allergic symptoms in nonsmokers who are suffering from allergies of diverse causes.

4. Little is known about the pathogenesis of tobacco allergy and its possible relationship to other smoking related diseases.
ALLERGY REFERENCES

(1) ALLISON, R. D., BORRE, G. M. Central and peripheral vascular effects during cigarette smoking. Archives of Environmental Health 19(2): 189-198, August 1969.

(14) DONZELL, F. Influenza sulle agglutinine dall'avvelenamento da fumo di tabacco. (Effect of tobacco smoke poisoning on agglutinins.) Giornale di Batteriologia e Immunologia 11: 1012-1018, 1933.

(16) FINKLEA, J. F., HASSELBLAD, V., RIGGAN, W. B., NELSON, W. C., HAMMER, D. I., NEWILL, V. A. Cigarette smoking and hemagglutination

(37) ISHIZAKA, K. The identification and significance of Gamma E. Hospital Practice: 70-81, September 1969.

(52) PAPIC, I., CERMKOVA, Z. Casna kozi reakce na tabakovy extrakt u choroby dychadel. (Early skin reaction against tobacco extract in respiratory system disease.) Rozhledy v Tuberkulose av Nemocech Plncich 24(9): 629-635, 1964.

