Dear Dan,

We have settled in Edinburgh and the family is quite pleased. We are doing some learning experiments with recombination and transfection. The lab is certainly well equipped for all of the X work, and there seem to be good provisions for EM heteroduplexing. However, there are no cell culture facilities readily available on the campus. There probably will be cell culture opportunity in the MRC. There probably will be cell culture opportunity in the MRC.

There probably will be cell culture opportunity in the MRC. If you can see the SV40 there, arrangements, and I believe you can, can you think of the UV-40 there? For those reasons, you might not simply facilitate the project. For those reasons, you might not simply facilitate the project.

Since you will be at INM Period, but evidently you had planned to talk to you at Monitor, but evidently you are not there at the same time. Could you send the DNA directly to me?

Since you will be at INM Period, but evidently you had planned to talk to you at Monitor, but evidently you are not there at the same time. Could you send the DNA directly to me?

I can read the DNA of form I 1009 from the to help me.

1. Separate the DNA of form I 1009 from the to help me.

form I on 1.4% agarose / E. B. as in Plate III, JMB 51.

Good wishes.

Roy Schindler

Sept 24, 1975

Dear Dan,

We have settled in Edinburgh and the family is quite pleased. We are doing some learning experiments with recombination and transfection. The lab is certainly well equipped for all of the X work, and there seem to be good provisions for EM heteroduplexing. However, there are no cell culture facilities readily available on the campus. There probably will be cell culture opportunity in the MRC. There probably will be cell culture opportunity in the MRC. If you can see the SV40 there, arrangements, and I believe you can, can you think of the UV-40 there? For those reasons, you might not simply facilitate the project. For those reasons, you might not simply facilitate the project.

Since you will be at INM Period, but evidently you had planned to talk to you at Monitor, but evidently you are not there at the same time. Could you send the DNA directly to me?

Since you will be at INM Period, but evidently you had planned to talk to you at Monitor, but evidently you are not there at the same time. Could you send the DNA directly to me?

I can read the DNA of form I 1009 from the to help me.

1. Separate the DNA of form I 1009 from the to help me.

form I on 1.4% agarose / E. B. as in Plate III, JMB 51.

Good wishes.

Roy Schindler

Sept 24, 1975
2. Incubate the Town I at 100°C and 360° l° light and cut from agarose.
- Electrophorise DNA from agarose in dialysis membrane sac.

3. Incubate DNA by alcohol ppt.

4. Establish conditions for single cut Hind III digestion.

5. Using these conditions do partial digestion and again electrophorise in 1.4% agarose/CTA-Br.

6. Localize DNA by 360° A° light and cut at full length DNA.

7. Localize DNA by 360° A° light and cut at full length DNA.

8. This DNA to be used for bipose reaction and transfection.

9. Pick plaques and make stocks.

10. Prepare DNA from stocks.

11. Remove infected DNA by Hind III digestion + electrophorise and isolate infected DNA.

12. Do heteroduplex mapping & with 5-40°C wild type DNA.

13. Select stocks which has deletion loop 0.2 units from each.

Others will be 3.4 units and 0.4 units.

This raises some questions:
- How much DNA
 should be applied to gels to yield 0.5°C 3 pm for the restriction digestion? Could you draw a diagram of electrophoresis lane for separating the DNA? Do you think it would be more economical to skip the
 gel electrophoresis (step 6.8) and use the partial
 digest directly for recombination? Partial digestion
 would generate 16 different molecules, whereas selecting
 for yield with lanes of dd1009 would only comprise
 4 different molecules.

Thanks for your help, I certainly like the idea for the project and am excited to proceed.

Sincerely,
[Signature]