A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily

(transcription factors/DNA-binding proteins/zinc fingers/growth-related genes)

THOMAS G. HAZEL*, DANIEL NATHANST, AND LESTER F. LAU**

*Department of Molecular Biology, Northwestern University Medical School, Chicago, IL 60611; and †Howard Hughes Medical Institute Laboratory and the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Contribution by Daniel Nathans, August 12, 1988

ABSTRACT We previously identified, by cDNA cloning, a set of genes that are expressed during the G1/G0 transition (cell cycle reentry) in mouse fibroblasts. These immediate early genes are transcriptionally activated within minutes of addition of serum or purified growth factors, and their mRNAs are superinduced in the presence of protein-synthesis inhibitors. We report here that one of these genes, represented by nur/77 cDNA (originally called 3CH77), encodes a member of the superfamily of ligand-binding transcription factors that includes the steroid and thyroid hormone receptors. The nur/77 cDNA sequence encodes a protein of 601 amino acids containing two regions of sequence similarity to members of this nuclear receptor superfamily, corresponding to their DNA-binding and ligand-binding domains. These results suggest that the growth factor-inducible immediate early gene nur/77 encodes a ligand-binding protein that regulates the genomic response to growth factors.

The proliferation of animal cells is initiated and regulated by polypeptide growth factors. The interaction of growth factors with their specific receptors generates a cascade of intracellular biochemical events, leading to the sequential expression of specific genes. By analogy to the developmental program of viruses, some of the genes activated early by the actions of growth factors are likely to regulate the expression of other genes necessary for the onset of DNA replication (2). We previously identified, by cDNA cloning, a set of genes that are transiently activated within minutes after quiescent BALB/c mouse 3T3 cells are stimulated with serum, platelet-derived growth factor, or fibroblast growth factor (3, 4). These "immediate early" genes are regulated at the transcriptional and posttranscriptional levels, and their mRNAs are superinduced in the presence of protein-synthesis inhibitors (4). In this communication we report the nucleotide sequence of one of these cDNA clones, 3CH77 (hereafter referred to as nur/77), and the amino acid sequence it encodes. Sequence comparison shows that the nur/77-encoded protein is related to the nuclear receptor superfamily encoded protein is related to the nuclear receptor superfamily encoded protein is related to the nuclear receptor superfamily encoded protein is related to the nuclear receptor superfamily. The cDNA sequence contains two regions of sequence similarity to members of this nuclear receptor superfamily, corresponding to their DNA-binding and ligand-binding domains. These results suggest that the growth factor-inducible immediate early gene nur/77 encodes a ligand-binding protein that regulates the genomic response to growth factors.

The nucleotide sequence of nur/77 cDNA was determined as described (4).

RESULTS

Nucleotide Sequence of nur/77 cDNA and its Encoded Protein. A cDNA clone representing the 3′-protein of nur/77 (clone 3CH77 in ref. 3) was used to select a nearly full-length cDNA clone from a library prepared by using poly(A)+ mRNA isolated from BALB/c 3T3 cells stimulated with serum for 3 hr in the presence of cycloheximide (10 µg/ml). Hybridization and subsequent reverse transcription were carried out as described (24), and reaction products were resolved by electrophoresis in 8% polyacrylamide gels containing 8 M urea.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: NGF, nerve growth factor.

†To whom reprint requests should be addressed.

To whom reprint requests should be addressed.

**The sequence reported in this paper is being deposited in the EMBL/GenBank data base (IntelliGenetics, Mountain View, CA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J04113).
followed by a 3’ untranslated region of 542 nucleotides. A consensus polyadenylation signal is located 18–23 bases upstream of the poly(A) tail. Like many other immediate early mRNAs, nur/77 mRNA has a short half-life (~20 min; ref. 4). Consistent with this observation, there exist within a 60-base-pair segment of the 3’ noncoding region three repeats of the ATTATA sequence motif thought to contribute to the instability of some mRNAs (25). In the deduced protein sequence, a potential N-linked glycosylation site is found at asparaginase-276. Between the lysine residues at positions 32 and 104 there is a region rich in proline, glutamic acid, serine, and threonine. This type of “PEST” sequence is thought to be associated with proteins of short half-lives such as the fos and myc gene products and one-dimensional carboxyhydrate, and is also found in members of the nuclear receptor superfamily (26, 27).

That the cDNA is nearly full-length was demonstrated by primer extension analysis. Reverse transcription of BALB/c 3T3 cell RNA from an oligonucleotide primer complementary to nucleotides 1–25 of the cDNA sequence indicated that the
The first ATG (position 1-25) is complementary to nucleotides upstream of the primer sequence (lanes 1 and 2). Two 32P-labeled oligonucleotides, one complementary to nucleotides 1-25 of the cDNA sequence (lanes 1 and 2) and the other complementary to nucleotides 24-43 (lanes 3 and 4), were used. Left and right four lanes show 32P-labeled sequencing-reaction products as size markers. The positions of oligonucleotides used as primers are indicated by arrows.

5' end of the nur/77 mRNA occurs heterogeneously 9-17 nucleotides upstream of the primer sequence (Fig. 2, lanes 1 and 2). The predominant mRNA start site occurs 16 nucleotides upstream of the 5' end of the sequence shown in Fig. 1. These results were confirmed by primer extension using an oligonucleotide complementary to nucleotides 24-43 of the cDNA; this reaction yielded products 32-40 nucleotides long (Fig. 2, lanes 3 and 4).

There are three in-frame ATG codons at the 5' end of the nur/77 cDNA sequence occurring at positions 112, 214, and 280. In addition, an out-of-frame ATG occurs at position 134. The first ATG (position 112) has a poor flanking sequence for translation initiation according to the consensus sequence derived by Kozak (28), whereas the ATG at position 214 has a more favorable flanking sequence. However, if the ATG at position 112 is not used, the next ATG (position 134), which does have features of the consensus sequence for initiation, would be used (29), leading to translation of 13 codons of a different reading frame. Although nur/77 mRNA purified by hybrid selection is inefficiently translated in the rabbit reticulocyte lysate system (3), it does yield two detectable protein products with molecular weights of 64,000 and 58,000, consistent with initiation at positions 112 and 280 (data not shown). Further analysis will be required to determine the correct initiation site in the cell.

**Relationship of nur/77 to the Nuclear Receptor Superfamily.**

The deduced amino acid sequence of nur/77 was compared to known protein sequences in the National Biomedical Research Foundation database (release 14.0) and was found to share significant amino acid sequence similarity with the superfamily of nuclear ligand-binding transcription factors that includes the steroid and thyroid hormone receptors (5-16). This similarity occurs in two regions. One is a highly conserved 66-amino acid region demonstrated for some of these receptors to be the DNA-binding domain (Fig. 3; refs. 13, 14, 18-20). Most notable in this region is the presence of eight strictly conserved cysteine residues thought to form two DNA-binding "fingers," each coordinated by a zinc ion (30). The extensive conservation of these cysteines and other residues in this domain is characteristic of the members of the nuclear receptor superfamily (31). The nur/77 sequence contains 50-58% sequence identity in this domain when compared to the human nuclear receptors (Fig. 3). A second region of sequence similarity occurs carboxyl to the DNA-binding domain (Fig. 4). This region has been shown for several of the nuclear receptors to function as the ligand-binding domain (18, 19, 21, 22). Although they bind structurally distinct ligands, all members of the nuclear receptor superfamily analyzed to date share moderate sequence similarity in this region. The sequence similarity shared between nur/77 and known nuclear receptors is comparable to that shared among the known receptors. Thus the homology between nur/77 and known nuclear receptors indicates that nur/77 is a member of this superfamily.

**DISCUSSION**

The interaction of serum growth factors with their membrane receptors results in the sequential activation of specific genes. Some of these genes are transcriptionally activated within minutes of growth factor stimulation, even in the absence of protein synthesis (3, 4, 32-34). Among these immediate early genes are several that encode known or probable transcription factors: the protooncogenes c-fos (33) and c-jun (2, 35), jun-B (36), Krox-20 (37), zif268 (NGFI-A, Egr-1, Krox-24) (38-41), and fra-1 (42). In this communication we report that the immediate early gene represented by nur/77 cDNA is another member of this group, encoding a protein that is related to steroid receptors and other ligand-dependent transcription factors.

Such hormones as glucocorticoids, mineralocorticoids, estrogen, progesterone, testosterone, the morphogen reti.

![Fig. 2. Primer extension analysis. Reactions were performed with 30 µg of total RNA from either quiescent BALB/c 3T3 cells (lanes 1 and 3) or cells stimulated with serum for 3 hr in the presence of cycloheximide (lanes 2 and 4). Two 32P-labeled oligonucleotides, one complementary to nucleotides 1-25 of the cDNA sequence (lanes 1 and 2) and the other complementary to nucleotides 24-43 (lanes 3 and 4), were used. Left and right four lanes show 32P-labeled sequencing-reaction products as size markers. The positions of oligonucleotides used as primers are indicated by arrows.](image1)

![Fig. 3. Homology between the predicted nur/77 sequence and the DNA-binding domain of hormone receptors. Numbers on the left refer to the first amino acids (one-letter code) of the lines. Amino acids that are identical in five or more sequences are boxed. hAR, human androgen receptor (8, 9); hER, human estrogen receptor (7); hPR, human progesterone receptor (10); hGR, human glucocorticoid receptor (5); hMR, human mineralocorticoid receptor (6); hTR, human thyroid hormone receptor (11, 12); hRAR, human retinoic acid receptor (13-15); cVDR, chicken vitamin D receptor (16).](image2)
FIG. 4. Sequence comparison by a computer-generated alignment of nur/77 with the ligand-binding domains of hormone receptors. Numbers on the left refer to the first amino acids of the lines. Those amino acids of nur/77 that are identical to at least one other receptor sequence are boxed. Numbers at the ends of sequences refer to the total numbers of amino acids in those sequences. Receptor designations are as given in the legend of Fig. 3.

A ligand for the nur/77 protein has not been identified. Since both retinoic acid and thyroid hormone bind multiple tissue-specific receptors (12, 15, 48), it is possible that nur/77 is another receptor for one of the known ligands. An additional possibility is that nur/77 may bind an intracellular molecule generated by growth factor action, rather than a ligand that diffuses into the cell. It has also been suggested that thyroid hormone-related and cholesterol-derived compounds, some of which are known to alter gene expression at the transcriptional level (49), may act through binding to as yet unknown receptors (31). One such compound may be the ligand for nur/77.

The appearance of nur/77 mRNA is not restricted to growth factor-stimulated fibroblasts. This mRNA also appears in the rat pheochromocytoma cell line PC12 after exposure to nerve growth factor (NGF).
is a Pew Scholar in the Biomedical Sciences. The study was supported by a grant from the National Institutes of Health to L.F.L. (ROI CA46565). T.G.H. is supported by a predoctoral training grant from the Public Health Service. L.F.L. is a recipient of the American Cancer Society Junior Faculty Research Award and is a Pew Scholar in the Biomedical Sciences.

We thank Richard Hall for excellent technical assistance. This work was supported by a grant from the National Institutes of Health to L.F.L. (ROI CA46565). T.G.H. is supported by a predoctoral training grant from the Public Health Service. L.F.L. is a recipient of the American Cancer Society Junior Faculty Research Award and is a Pew Scholar in the Biomedical Sciences.