Assume M. solani (in nutrient) will have OD₆₅₀ ~ 10,000

Thus 330 mg/ml ~ 10,000 OD

... 370 mg/ml ~ 10,000 OD

our milieu OD is \(0.7 \times 4 = 2.8\)

\(\frac{0.3}{10^4}\)

\(\therefore \) our case = \(\frac{330 \times 0.7}{10^4} = 3.47\) mg

A.00

1 mg in 10⁻³ ml
2 mg in 1 ml
24 mg in 1 liter
24 mg in 6 x 10⁻³ ml

Assume RNA B will be the same, hydrolysed as in the test.

Assume chain length to be 100, then M is 1 in 10⁻⁵ M of 3 mg/ml

Is this the correct molarity?

Then probably a factor of 5 due to this?

Thus, how many should be on the mixture. Let me do approx. by division.

<table>
<thead>
<tr>
<th>Try times</th>
<th>1</th>
<th>2.5</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD₆₅₀</td>
<td>0.5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
<td>5.7</td>
</tr>
<tr>
<td>OD₆₂₅</td>
<td>0.15</td>
<td>0.35</td>
<td>0.55</td>
<td>0.65</td>
<td>0.75</td>
<td>0.85</td>
</tr>
</tbody>
</table>

\(\text{OD}_{625} \Rightarrow \frac{\text{OD}_{625}}{\text{OD}_{625}} \approx 2.15\)
Rate of hydrolysis of "yeast RNA" by prostatic acid phosphatase

The "yeast RNA" was commercial yeast RNA, prepared treated by
Enzymel 30 Jun 58: heated (phenol treatment, alcohol precipitation, dried in H2O)
optical density 1.260
0.05 ml → 4 ml
OD 0.645

then prob Qatar 3 mg/ml

After Prostatic phosphatase new prep by T.D.S.
cat. enzyme in 0.05 M acetate buffer.
dilute enzyme 1:10 enzyme diluted to 1/50 in H2O.
any by T.D.S.

\[
\text{AMP (### mλ)} \quad 0.1 \text{ ml} \\
\text{M acetate pH 5.0} \quad 0.1 \text{ ml}
\]

\[
37^\circ \text{C} \\
\text{Enzyme (### mλ)} \quad 0.1 \text{ ml} \\
\text{H2O} \quad 0.2 \text{ ml} \\
\text{H2O} \quad 0.5 \text{ ml}
\]

This pace is digestion in about 2 minutes.

Use yeast RNA 1.0

diluted enzyme (### mλ)

M acetate

H2O

Then add 10 ml of 2.5N NaOH 1.0 (to hydrolyze nucleic RNA)

2.5 ml.
To assay one $0.3 + 0.4 = 0.7$ ml PCA

and 1.2 ml H$_2$O

Ammonium 0.4

E. coli Ammonia buffer 0.2

5.0 ml reaction 0.635

$$\text{A$_{450}$ (mg I$_2$ g$_{-1}$dw)} = 1$$

0.15

1.15

0.3

1.5 ml.

The tissue is clear.

Time ≤ 4 min. 45 min.

6.4 6.5

6.7 6.3

25

$37^\circ C$

Red opalescence has been seen; the tube was cloudy

12 Warburg incubator

ie. NADH diaphorase.
Friday, 7th April 58

Repeat

just as yesterday, except that

Nash diethyl was for 5 hours, at 37°C

except two which were 48 hours

This time blue was not clearly.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Room</td>
<td>10:35</td>
<td>10:46</td>
<td>10:57</td>
<td>11:18</td>
<td>11:59</td>
<td>11:10</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Ice</td>
<td>3:46</td>
<td>3:57</td>
<td>4:18</td>
<td>4:59</td>
<td>6:40</td>
<td>7:21</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other

| 0.60 | 0.68 | 2.29 | 3.60 | 3.75 | 7.20 | 7.70 |

Time past 50% of P was 11:30, PNA

.: 1 in 6 ends!!
Calculate the pseudo first order rate:

\[
\text{Rate} = k \frac{[E][S]}{k + [S]}
\]

where \(k \) = Michaelis constant.

Assume Michaelis constant = \(2 \times 10^{-3} \) M

My assay of AMP (eg. 10^4 E6)

\(1 \text{ pmol} / \text{min} \) at \(1/2 \) nd.

\(\text{AMP (10mM)} \)

\(1 \text{ nd} \)

2nd.

AMP can actually work \(15 \times 10^{-3} \) M

Then, will close Michaelis constant is near and the limiting rate.

My assay of AMP more difficult

\(2 \text{ pmol} / \text{min} \) at \(1/2 \) nd more in 3 minutes.

AMP can be \(2 \times 10^{-3} \) M

Then, the new enzyme (diluted \(1/2 \))

\(\frac{1}{3} \times 5 = 15 \times 3 \)

Tm at \(\frac{3}{4} \)
RNA attack

1 ml of

plus 1 ul of RNA 1 (approx 2ng/ml)

2nd

off of of 5 to per 0.2 ng RNA 1 2nd

always correctly

Then probably in the range of initial slope.

Mom 0.4

0.1 ml enzyme 50 ul

and 1.0 ul RNA 1 (3 ng/ml)

0.4 ul

65 ul in 15 ul total.

above 2 ng RNA/ml = 6 x 10^{-3} M in mol/liter

(very close study in the initial slope: we shall check at a later time.

Time to half, say, ~ 60 minutes.

Now scale down volume to 2 ml io. 0.1 ul enzyme \(\frac{1}{50} \) per 2 ml

\(\frac{4 \text{ ng RNA}}{0.66} \)

run with 0.2 ng RNA rate of change 1 ul

volume 66 ul

0.1 x 3 = 0.48 ul

But before end 0.14 of E should have done 1 ul in 60 minutes

But as I indicated for 1 hour, the

Mr.